
A Differential Evolutionary Approach to Solve

the Hardware Software Partitioning Problem

 Dolly Das Mr. Love Verma Anita Das

 Computer Science and Engg. Deptt Assistant Professor Lecturer

 Raipur Institute of Technology Information Technology Deptt Computer Science and Engg. Deptt
 Raipur [C.G.] Raipur Institute of Technology Columbia Institute of Technology

 Raipur [C.G.] Raipur [C.G.]

Abstract— The partitioning problem rose out to be one of

the crucial problems in the design of an embedded system as the

overall cost and delay of the system depends sturdily on this

issue. The paper presented here focuses on an approach to solve

the hardware software partitioning problem using differential

evolutionary algorithm. The novelty of this approach is its

enhanced efficiency and the quality of the result in a given

constraint. The results are also compared with particle swarm

optimisation algorithm and the results of the experiment show

the proposed algorithm’s effectiveness and efficiency in finding

the near optimal solution even for large number of tasks.

Keywords—Hardware software partitioning, differential

evolution, particle swarm optimization

1. INTRODUCTION

An embedded system is a computer system with a

dedicated function within a larger mechanical or electrical
system, often with real-time computing constraints. . It is
embedded as part of a complete device often includes
hardware and mechanical parts. It is a specialized computer
system that is part of a larger system or machine. Typically, an
embedded system is housed on a single microprocessor board
with the programs stored in ROM. Some embedded systems
include an operating system, but many are so specialized that
the entire logic can be implemented as a single program.

Modern embedded systems are often based on
microcontrollers i.e. CPUs with integrated memory and/or
peripheral interfaces but ordinary microprocessors are also
still common, especially in more complex systems For
example embedded signal processing application uses both
hardware specific accelerator circuit as well as general-
purpose programmable unit running specific software

Such a combination is very useful as hardware specific
accelerator circuit named as hardware works much faster as
compared to general-purpose programmable unit running
specific software named as software but the cost required for
the hardware is much more than that of the software. The
amount required to create a software solution and its
maintenance is low but the problem with the software is that it
work at a slower rate as compared to the hardware

Thus those components which are restricted by
performance are realized by hardware , and software is used
to realize non critical components. Hence, a good composition
between cost and performance can be attained. This has led to
the field of hardware software co-design. The problem
consists in the discovery of intend of a structure that meets the
performance and cost requirements.

The prime part of hardware software codesign [l, 2, 3, 41
is to partition the system into specific hardware and software
parts so as to meet the design and real time constraints as well
as to minimize the system cost. Thus the real challenge
depends on to choose which components of a system should
be realized in hardware and which ones in software.

In partitioning, the system‟s operation is divided in small
functional tasks finding the best possible cost and
performance trade off with a set of constraints in mind. Since
the systems design have turn out to be more and more
difficult, studies have been undertaken to automate
partitioning as much as possible and hardware software
codesign together with partitioning is becoming a rising
solution to modern embedded system [10].

With the increment of tasks, finding the best partitioning is
becoming more difficult. Therefore use of search and
optimization methods has been an appropriate approach. One
set of well-liked and influential approaches for search and
optimization problems are Evolutionary Algorithms (EAs) [6],
[7]. These days EAs are widely used in many engineering
applications. A very successful solution for solving the
global continuous optimization problem is the Differential
Evolution (DE) algorithm. It uses distance and direction
information from current population for further search
guidance. This paper proposes a DE algorithm technique for
hardware software partitioning application.

The remaining sections of this paper are organized as
follows: Section 2 gives a review about related work in this
area. Section 3 gives an idea of DE algorithm. Section 4
explains chosen hardware software partitioning algorithm and
opted partitioning methodology. The achieved results are
explained in Section 5. Finally, Section 6 gives the
conclusions the paper and also explains the future works.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS071071

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1322

2. RELATED WORK

In earlier times partitioning was carried out manually. But

due to the increase in complexity of the systems, automation
of partitioning gained researchers interest. The joint problem
of partitioning and scheduling is resolved in Ref [9]. It
includes two local search heuristics for partitioning and
scheduling differently. Both algorithms operate on the similar
graph at the same time. The minimization of the worst case
latency of the task graph subject to the area constraints on the
architecture is the objective of this technique.

Another solution for hardware software partitioning
problem is mixed Integer Linear Program (ILP) method. This
is a two-phase heuristic optimization scheme which aims at
fast and improved timing estimations by means of continual
scheduling phases, as well as using the estimates in the
partitioning phases. This approach was sluggish and just
realistic for small problems [11], [12], [13]. Arato et al[17]
offered a ILP-based approach that worked well for relatively
large systems.

Recently Saha et al. [15] modeled partitioning problem as
a Constraint Satisfaction Problem (CSP), and have obtained a
Genetic Algorithm (GA) based approach to solve the CSP. A.
Bhattacharya [5] formulated hardware software partitioning
problem as an optimization problem, and multi-agent search
algorithm called Particle Swarm Optimization (PSO) can be
invoked to discover most favorable result to the partitioning
problem.

 A. Farmahin and M. Kamal [20] gave another solution for
this problem using Discrete Particle Swarm Optimization
algorithm. This discrete PSO explores the search spaces step
by step and found optimal or near optimal solution, if the
algorithm is given enough time.

3. DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution (DE) introduced in 1995 has been a

competitive stochastic real parameter optimization algorithm.
As a standard Evolutionary Algorithm (EA), DE also
possesses computational steps. DE perturbs the population
members with the scaled differences of distinct population
members. Hence, a step-size parameter used in algorithms
such as evolutionary programming and evolution strategy is
not required to be specified. The strong consistent
performance of DE has drawn the interest of numerous
researchers.

DE uses the distance and direction information i.e.
differential information from the present population to direct
its new search. But DE has no method to extort and exploit
global information regarding the search space. This algorithm
maintains a population of N points in every generation, where
each point is a possible solution and N is a control parameter.
The algorithm evolves and improves the population
iteratively. In each generation, a new population is generated
based on the current population. To generate offsprings for the
new population, the algorithm extracts distance and direction
information from the current population members and adds
random deviation for diversity. If an offspring has a lower
objective function value than a predetermined population
member, it will replace this population member. This

evolution process continues until a stopping criteria is met i.e.
current best objective function value is smaller than a given
value or the number of generations is equal to a given
maximum value.

In generation k, we denote the population members by

 x1
k
 , x2

k
……………. xn

k
.

The DE algorithm is given as follows

DE Algorithm

Step 1: Set k ; = 0 and randomly generate N points
x1

0
 , x2

0
……………. xn

0
from X to form an initial

population.

Step2: For each point x1
k

(1 ≤ i ≤ N), execute the DE
offspring generation scheme to generate an
offspring x1

k+1
.

Step 3: If the given stop criteria are not met, set k := k+1,
goto Step 2.

The DE offspring generation scheme for generating x1
k+1

are
as follows :

Step1: Choose one point xd randomly such that
f(xd) ≤ f (xi

k
)

Step 2: Generate a trail point u = (u1, u2,………. un) as
follows

 Step 2.1: DE Mutation

 Generate a temporary point z as follows:

z = (F + 0.5) *xd + (F - 0.5) * xi + F * (xb - xc)
(1)

where F is the control factor

Step 2.2: DE Crossover

 For j € S, uj is chosen to be zj : for j not an
element of S, uj is chosen to be (xi

k
)j

Step 3: If f(u) ≤ f (xi
k
), set xi

k+1
:= xi

k
 .

S is determined by the probability of crossover which is a
parameter of the DE algorithm

The point z is generated by combining the current point xi with
a better point xd which is randomly selected from the current
population and a randomly sampled vectors differentials
(xb - xc)

The advantages of the utilization of sampled vector
differential are as follows:

i. Since the mean of the distribution of differentials is
always zero there is no sampling bias. This is
helpful in maintaining the population diversity

ii. The standard deviation of the differentials could
change along with the size and shape of the
population in the search space which is valuable
for problems whose parameters exhibit vastly in
different ranges and sensitivities

iii. The scheme works well as a local optimizer since the
differentials in a converging population will
eventually tend to zero.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS071071

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1323

Because of this ability of maintaining the diversity and to do
the local search, the De algorithm performs better than other
EA‟s. But DE algorithm has no mechanism to directly use
global information about the search space to steer the
population towards potential areas.

4. HARDWARE SOFTWARE PARTITIONING

The increase in the usage of embedded system in the market

attracted researchers and gained interest in the field of

hardware software partitioning

Problem Definition

The formulization of hardware software partitioning problem
is given by Arato et al. [8]. The problem is represented by an
undirected graph G = (V, E). The set of vertices, represented
by V refer to tasks and set of edges, denoted by E refers to the
communication between the selected pair of vertices.
Attempts were taken to partition the set of vertices into VH and
VS. Here VH represents the task to be realized on a hardware
and VS represents the task to realized on software VH ∩ VS =
Ø and VH ∪ VS The partitioning problem can be formally
defined as a set of tasks together represent a design, and the
problem of finding a partition of hardware and software such
that combining them create an equivalent system with a
minimal cost , while fulfilling performance constraints. Hence
determining which task should be implemented in hardware
and which on software in a manner that the whole design
meets cost and time constraints.

Problem Representation

Representation of the problem is an important step in DE The
method of partitioning is explained as a string of bits for each
particle. The number of tasks denotes the length of a particle. .
A task must be implemented in hardware or whether it should
be developed by software is defined by a bit. Bit 1 represents
hardware and bit 0 represents software. An example of a
particle is illustrated in fig.

 A matrix representing number of solution and number of task
is formed which is randomly generated using Matlab code.

Partitioning Methodology

To evaluate the fitness function there is a need to provide
some information in the specified constraint. The population
size which represents the number of solutions and the
dimension which represents the number of tasks along with
the number of iterations is provided as input. In the beginning
initial population and the trail point are randomly generated.
In each generation (iteration), fitness of each particle and an
estimation of cost and time is achieved. Then new offspring is
generated using (1). This process is continued until
termination condition is not reached. Termination conditions

are generation number or number of iterations or convergence
of algorithm to a predefined fitness value.

Fitness Function

In order to evaluate an obtained solution, we need to know the
goodness of a partition which is measured using metrics. The
possible metrics are economical cost, performance time,
power consumption, silicon area, number of pins, memory
size, lines of code, or communications cost. Generally
combination of these metrics are combined and a fitness
function (co design cost and time estimator) is obtained to
guide the algorithm‟s optimization process.

The focus in our partition is on performance (execution time),
area costs and communication costs between software and
hardware blocks. Minimizing the system cost while
maintaining the constraint requirement for worst execution
time is the main objective of our solution. Meeting the time
constraint as well as having minimal cost will be the optimal
solution for this system.

The fitness of solution is calculated by adding all the four
constraint values i.e. hardware cost, hardware execution time,
software cost and software execution time. The minimum
value is selected as fitness function.

5. EXPIERIMENTAL RESULTS

The partitioning algorithm of the proposed system is

implemented using PSO and DE and its performance is

evaluated by comparing both the results. Matlab is used for

the implementation. Table 1 show the PSO and DE

parameters which used in the experiment.

 Each algorithm has been run for 1000 generations and the

Table 1 and Table 2 reports the outcomes. There are four

variables i.e. population size, dimension, PSO execution

result and DE execution result. in Table 1 dimension is kept

constant and Table 3 population size is invariable the

population and the dimension depicts here the inputs of the

above described problem.

Population Size

Dimension

PSO

DE

10

15

20

25

30

30

30

30

30

30

15574

16341

16181

16281

16320

12676

13422.2

13196.8

11999

11593.8

Table 1

Population Size

Dimension

PSO

DE

10

10

10

10

10

10

15

20

25

30

5249

4154

6850

6338

5123

2794

2804

4118.4

3626.2

3193.8

Table 2

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS071071

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1324

The result shows that the proposed system gives best result

for DE algorithm. In both the above tables readings show

that the result derived from DE is always best in compared to

PSO. The results are diagrammatically represented in figure 1

and figure 2

The problem of hardware software partitioning give an

optimum result when accompanied with differential

evolutionary algorithm. the graphical representation shows

the outperformance of proposed algorithm

Figure1.When dimension is constant

Figur2. When population size is constant

7. CONCLUSION

In this paper an approach is proposed for hardware software

partitioning problem using differential evolutionary

algorithm. The performance of differential evolutionary

algorithm is competitive to PSO and is able to find optimum

solution for the above described problem. But there is still

scope in futher enhancements in this project and still research

opportunities in this field and more optimum results.

8. REFERENCES

[l] R. K. Gupta and G. D. Micheli,“ Hardware Software cosynthesis for

digital systems,” IEEE Design and Test, pp. 29-41, Sept, 1993
 [2] S. Kumar, J. H. Aylor, B. J. Johnson, and W. A. Wulf, („ A

framework for hardware software codesign ,” IEEE Computer, pp.

39-45, Dec 1993
[3] D. E. Thomas, J. K. Adams, and H. Schmit, “A model and

methodology for hardware software codesign,” IEEE Design and

Test, pp. 6-15, Sept, 1993
[4] R. Ernst, J. Henkel, and T. Benner, “ Hardware soft- ware

cosynthesis for micro controller^,^^ IEEE Design and Test, pp. 64-

75, Dec, 1993
 [5] A. Bhattacharya , A. Konar 1, S. Das 1, Crina Grosan and A.

Abraham Hardware Software Partitioning Problem in Embedded

System Design Using Particle Swarm Optimization Algorithm
[6] A. E. Eiben, and J. E. Smith, Introduction to evolutionary computing,

Berlin Heildberg: Springer-Verlag, 2003.

[7] T. Mitchell, Machine learning, New York, McGraw-Hill,

[8] J¨urgen Teich. Digitale Hardware/Software Systeme. Springer

Verlag, 1997.

[9] K. S. Chatha and R. Vemuri, “MAGELLAN: multiway hardware
software partitioning and scheduling for latency minimization of

hierarchical control-dataflow task graphs,” in Proc. Intl. Conf.

Hardware-Software Codesign and System Synthesis, 2001.
[10] R. Ernst, “Codesign of embedded systems: status and trends,” in

Proc. IEEE Design & Test of Computers, 1998, pp.45-54.

[11] W. Wolf, “A decade of hardware/software codesign,” in Computer,

pp. 38-43, Apr. 2003.
 [12] R. Niemann and P. Marwedel, “An algorithm for hardware/software

partitioning using mixed integer linear programming,” in Proc.

Design Automation for Embedded Systems, special issue:
Partitioning Methods for Embedded Systems, vol. 2, Mar. 1997, pp.

165-193.

[13] R. Niemann, “Hardware/software codesign for data flow dominated
embedded systems,” Kluwer Academic Publishers, 1998.

[14] R. A. Wildman, J. I. Kramer, D. S. Weile, and P. Christie, “Multi-

objective optimization of interconnect geometry,” in IEEE Trans. On
Very Large Scale Integration Syst., pp. 15- 23, Feb. 2003.

 [15] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms for

multi-objective optimization: performance assessments and
comparisons,” in Proc. Cong. Evo1utionary Computation, May 2001,

pp. 979-986.

[16]. F. Glover, E. Taillard and D. de Werra. A user‟s guide to tabu search.
Annals of Operations Research 41: 3–28, 1993.

[17] P. Arato, S. Juhasz, Z. A. Mann, A. A. Orban, and D. Papp,

“Hardware software partitioning in embedded system design,” in
Proc. Intelligent Signal Processing, Sept. 2003.

[18] R. C. Eberhart and J. Kennedy, “A new optimizer using particle

swarm theory,” in Proc. 6 th Symp. Micro Machine and Human
Science , Nagoya, Japan, 1995, pp. 39-43.

[19] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by

simulated annealing. Science 220(4598): 671–680, 1983.
[20] HW/SW Partitioning Using Discrete Particle Swarm by A.

Farmahini, M. Kamal and S. Mehdi Fakhraie

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS071071

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1325

