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Abstract-In an Intrusion Detection System (IDS) has 
emerged as one of the most effective way of furnishing security to 
those connected network and the heart of the modern intrusion 
detection system is a pattern matching algorithm. A network 
security application needs the ability to perform the pattern 
matching to protect against attacks like viruses and spam. The 
solutions for firewall are not scalable; they don’t address the 
difficult of antivirus. The main work is to furnish  the powerful 
systematic virus detection hardware solution with minimum 
memory for network security. Instead of placing the entire 
patterns on a chip, a two phase antivirus processor works by 
condensing as much of the important filtering information as 
possible onto a chip. Thus, the proposed system is mainly 
concentrated on reducing the memory gap in on chip memory 
along with the stage of Exact-matching engine. 

Keywords-memory gap, virus detection, network security, 
embedded system 

I. INTRODUCTION 

To make a network environment, firewalls were first 
announced to block unauthorized Internet users from 
accessing resources in a network by checking the packet head 
(MAC address/IP address/port number). This method 
significantly reduces the probability of being attacked. 
Therefore, traditional firewalls no longer furnish enough 
protection. Initially, the solutions were implemented at the 
end-user side but tend to be merged into firewalls to provide 
multi-layered protection.  

The Fig. 1 shows a typical architecture of a firewall 
router. When a new connection is established, the firewall 
router should scan the connection and forwards these packets 
to the host after confirming that the connection is secure.  

 
 

Fig.1 Architecture of firewall router 

The router might initially disclaim some connections 
from the firewall based on the target’s IP address and the 
connection port. Then, the router would monitor the content of 
web pages to prevent the user from accessing any page that 
connects to malware links. 

When the user wants to download a file, to ensure 
that the file is not infected, the firewall must decompress this 
file and check it using anti-virus programs. The firewall 
routers require several time-consuming steps to provide a 
secure connection.  

The major contribution is to reduce the memory gap 
in the on-chip memory while using external memory. Here the 
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proposed algorithm used to reduce the memory gap of on-chip 
memory. 

 
 

II. VIRUS DETECTION PROCESSOR 

 Fig.2 
virus detection processor architecture 

The design, shown on Fig. 2 is a two-phase pattern-
matching architecture mostly comprising the filtering engine 
and the exact-matching engine. The filtering engine is a front-
end module responsible for filtering out secure data efficiently 
and indicating to candidate positions that patterns possibly 
exist at the first stage. The exact-matching engine is a back-
end module responsible for verifying the alarms caused by the 
filtering engine. In the second stage of exact-matching engine, 
only a few unsaved data need to be checked. 

Both engines have individual memories for storing 
significant information. For cost reasons, only a small amount 
of significant information regarding the patterns can be stored 
in the filtering engine’s on-chip memory. In this case, they 
used a 32-kB on-chip memory for the ClamAV virus database, 
which contained more than 30 000 virus codes and localized 
most of the computing inside the chip. 

  Conversely, the exact-matching engine not only 
stores the entire pattern in external memory but also provides 
information to speed up the matching process. The exact-
matching engine is space-efficient and requires only four 
times the memory space of the original size pattern set. The 
size of a pattern set is the sum of the pattern length for each 
pattern in the given pattern set. 

III. FILTERING ENGINE  

In this work, the overall performance strongly 
depends on the filtering engine. Here, introduce two classical 
filtering algorithms for pattern matching in the following 
sections, then show how to merge their structures in the same 
space to improve the filter rate.  
 

A. Wu-Manber Algorithm 
 

 Fig. 3 Wu- 
Manber Matching process- Matching flow 

  
TheWu-Manber algorithm is a high-performance, 

multi-pattern matching algorithm based on the Boyer-Moore 
algorithm. It builds three tables in the preprocessing stage: a 
shift table, a hash table and a prefix table. The Wu-Manber 
algorithm is an exact-matching algorithm, but its shift table is 
an efficient filtering structure. The shift table is an extension 
of the bad-character concept in the Boyer-Moore algorithm, 
but they are not identical.  

 

The fig.3 shows the matching process of matching 
flow algorithm. The shift table gives a shift value that skips 
several characters without comparing after a mismatch. After 
the shift table finds a candidate position, the Wu-Manber 
algorithm enters the exact-matching phase and is accelerated 
by the hash table and the prefix table. The performance of the 
Wu-Manber algorithm is not proportional to the size of the 
pattern set directly, but it is strongly dependent on the 
minimum length of the pattern in the pattern set. 

 

B. Bloom Filter Algorithm 

A Bloom filter is a space-efficient data structure used 
to test whether an element exists in a given set. This algorithm 
is composed of different hash functions and a long vector of 
bits. Initially, all bits are set to 0 at the preprocessing stage. To 

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings



Proceedings of International Conference”ICSEM’13” 

S.Shamili ,  B.Karthiga 
505 

 

add an element, the filter hashes the element by these hash 
functions and gets positions of its vector. 

 
 Fig. 4 Bloom filter matching process- matching flow 

The Bloom filter sets the bits at these positions to 1. 
The value of a vector that only contains an element is called 
the signature of an element. To verify the membership of a 
particular element, the Bloom filter hashes this element by the 
same hash functions at run time, and it also generates 
positions of the vector.  

The output of the Bloom filter can be a false positive 
but never a false negative. Therefore, some pattern matching 
algorithms based on the Bloom filter must operate with an 
extra exact-matching algorithm. However, the Bloom filter 
still features the following advantages: 1) it is a space-efficient 
data structure; 2) the computing time of the Bloom filter is 
scaled linearly with the number of patterns; and 3) the Bloom 
filter is independent of its pattern length. 

The Fig. 4 describes a typical flow of pattern 
matching by Bloom filters. This algorithm fetches the prefix 
of a pattern from the text and hashes it to generate a signature. 
Then, this algorithm verifies whether the signature exists in 
the bit vector. If it is yes, it shifts the search window to the 
right by one character for each comparison and repeats the 
above step to filter out safe data until it finds a candidate 
position and launches exact-matching. 
 
C.  Shift-Signature Algorithm 

It re-encodes the shift table to merge the signature 
table into a the shift-signature table. This table has the same 
size as the original shift table as its width and length. There 
are two fields, S-flag and carry, in the shift signature table. 

The carry field has two types of data: a shift value and a 
signature. The S-flag is used to indicate the data type of a 
carry. The filtering engine can then filter the text using a 
algorithm while providing a higher filter rate. 

First, the algorithm generates two tables, a shift table 
and signature table.The generation of the shift table is the 
same as in the Wu-Manber algorithm. The shift table is used 
as the primary filter. The signature table could be considered a 
set of the bit vector of the Bloom filter, and it is used for the 
second-level filtering. The signature table’s generation is 
similar to the Bloom filter but is not identical. 
 

IV. EXACT-MATCH ENGINE  

The EME must verify the false positives when the 
filtering engine alerts. It also identifies patterns for upper-
layer applications. Most exact-match algorithms use the two 
kinds of trie structures shown in Fig. 5  loose and compact 
tries, to establish their pattern databases. Both trie structures 
have their merits.  

 Fig.5 
(a)table generation and (b) re-encodes of shift-signature table 

Unlike loose tries, compact tries construct pattern 
databases with two pointers, sibling and child, to reduce their 
memory requirements. However, this method has potential 
performance problems because it may search link lists formed 
by sibling pointers. Attacks can be avoided by removing 
patterns that cause attacks before constructing the pattern 
database. For this reason, our exact-matching engine’s 
algorithm use compact tries and propose several solutions to 
mitigate the effect of algorithmic attacks. 

A compact trie usually has only one entrance. 
However, for multiple patterns, this method needs a 
significant amount of time to search the prefix node of a 
pattern in the entrance’s sibling list. To reduce search time, 
dividing a huge trie into several lightweight tries to generate 
multiple entrances by hashing the root node of each 
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lightweight trie. The generated hash values are root addresses 
for each lightweight trie tree. Therefore, the exact-matching 
engine can easily get more entrances and have first nodes with 
short sibling lists. The exact-matching engine overlaps 
computation with memory access time. Therefore, simply 
hashing the trie to generate multiple entrances and carefully 
arranging the data in the memory efficiently solves the 
memory gap problem at the algorithmic level. 

The trie-skip mechanism is implemented by four 
major fields for each trie node. The skip value is eight, 
meaning that the closest candidate pattern is behind the 
current candidate by eight characters. However, because the 
exact-matching engine does not always start from the 
beginning of a pattern, the jump node field indicates the first 
node that the exact-matching engine should compare for the 
new candidate pattern after a mismatch occurs. The suffix 
offset fixes the search window and notifies the exact-matching 
engine, which fetches characters behind the  new pattern 
pointer with four characters. The jump-enable bit and jump 
node are used to implement this jumping idea.  
 

V. PROPOSED SYSTEM 

 

Fig .6 state diagram of AC algorithm 

The Fig.6 shows the state transition diagram derived 
from the AC algorithm where the solid lines represent the 
valid transitions while the dotted lines represent a new type of 
state transition called the failure transitions. The failure 
transition is explained as follows.  

Given a current state and an input  character, the AC 
machine first checks whether there is a valid transition for the 
input character; otherwise, the machine jumps to the next state 
where the failure transition points. Then, the machine 
recursively considers the same input character until the 
character causes a valid transition.   

Due to the common substring of string patterns, the 
compiled AC machine have states with similar 
transitions.despite the similarity, those similar states are not 
equilent states and cannot be merged directly. In this, the 
functional errors can be created if those similar states are 
merged directly. So a new mechanism can be proposed to 
rectify those functional errors after merging those similar 
errors. 

 

Fig.7 Merging similar states 

The merg_FSM is a different machine from the 
original state machine but with a smaller number of states and 
transitions. A direct implementation of merg_FSM has a 
smaller memory objective is to modify the AC algorithm. It 
can store only the state transition table of merg_FSM in 
memory while the overall system still functions correctly as 
the original AC state machine does. The new state traversal 
mechanism guides the state machine to traverse on the 
merg_FSM and provides correct results as the original AC 
state machine. The Fig.7 shows the merged patterns that 
reduces the memory gap which is compared with the AC 
algorithm used. 
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VI. SIMULATION RESULT 

 

Fig .8 simulation result for merg_fsm algorithm 
 

 
VI. CONCLUSION 

In this paper, a novel architecture for pattern 
matching for network intrusion detection system. Thus here, 
the expected memory gap can be reduced with high 
performance, while using AC algorithm created in on-chip 
memory. 
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