Proceedings of International ConferefiGSEM’13”

A design of virus detection processor for embedded
network security

S.SHAMILI

M.E.VIsi Design(PG Scholar),
Srinivasan Engineering College,
Perambalur-621212,
TamilNadu, India
sksshamili@gmail.com.

Abstract-In an Intrusion Detection System (IDS) has
emerged as one of the most effective way of furnisty security to
those connected network and the heart of the moderimtrusion
detection system is a pattern matching algorithm. Anetwork
security application needs the ability to perform he pattern
matching to protect against attacks like viruses ath spam. The
solutions for firewall are not scalable; they don'taddress the
difficult of antivirus. The main work is to furnish the powerful
systematic virus detection hardware solution with rmimum
memory for network security. Instead of placing the entire
patterns on a chip, a two phase antivirus processoworks by
condensing as much of the important filtering infomation as
possible onto a chip. Thus, the proposed system imainly
concentrated on reducing the memory gap in on chipnemory
along with the stage of Exact-matching engine.

Keywords-memory gap, virus detection, network security,
embedded system

[. INTRODUCTION

To make a network environment, firewalls were first
announced to block unauthorized Internet users from
accessing resources in a network by checking tbhkepdead
(MAC address/IP address/port number). This method
significantly reduces the probability of being aked.
Therefore, traditional firewalls no longer furnistnough
protection. Initially, the solutions were implemedtat the
end-user side but tend to be merged into firewallprovide
multi-layered protection.

The Fig. 1 shows a typical architecture of a firkwa
router. When a new connection is established, treavall
router should scan the connection and forwardsetpeskets
to the host after confirming that the connectiosdsure.

B.KARTHIGA

Associate Professo
SrinivaBagineering College,
Perambalur-621212,

TamilNadu, India
karthiga.jaya@yahom.co

ﬁ/ Network Security Architecture /_

User Layer

Content

Anti-Virus Filter

Anti-Spam

Decompressor
(ZIP, RAR, ARJ ...etc)

File Type Classification
(EXE, COM, DOC ...etc)

Packet Sniffer

MIME Header Parser

F C_—+1
| 1 A
—
Kernel Layer v Virus Scaning

TCP/IP Stack
Classification, Packet R ly...etc

Network Interface

—

Fig.1 Architecture of firewall router

The router might initially disclaim some connecgon
from the firewall based on the target's IP addresd the
connection port. Then, the router would monitordbatent of
web pages to prevent the user from accessing agy et
connects to malware links.

When the user wants to download a file, to ensure
that the file is not infected, the firewall mustcdenpress this
file and check it using anti-virus programs. Theeiall
routers require several time-consuming steps toigeo a
secure connection.

The major contribution is to reduce the memory gap
in the on-chip memory while using external memdatgre the

S.Shamili, B.Karthiga

503

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

proposed algorithm used to reduce the memory gam-ahip
memory.

II. VIRUS DETECTION PROCESSOR

PATTERN
BONTER-SHFTVALUE

/
TREBUFFRR o= TEXTEDE

1 SIGNATU-
RE
TABLE

INPUTFILE

[
T T DBTRE
TABLE

2
(= B I S e B

O OUTPUT FILE

FILTERING
ENGINR

ADDR
EXACT MATCHING ENGINE

Fig.2
virus detection processor architecture

The design, shown on Fig. 2 is a two-phase pattern-
matching architecture mostly comprising the filbgriengine
and the exact-matching engine. The filtering enggne front-
end module responsible for filtering out secureadsficiently
and indicating to candidate positions that pattgwossibly
exist at the first stage. The exact-matching enggna back-
end module responsible for verifying the alarmssealby the
filtering engine. In the second stage of exact-matg engine,
only a few unsaved data need to be checked.

Both engines have individual memories for storing
significant information. For cost reasons, onlymaa$i amount
of significant information regarding the patterrmde stored
in the filtering engine’s on-chip memory. In thiase, they
used a 32-kB on-chip memory for the ClamAV virusathase,
which contained more than 30 000 virus codes andlilted
most of the computing inside the chip.

Conversely, the exact-matching engine not only
stores the entire pattern in external memory bst arovides
information to speed up the matching process. Thecte
matching engine is space-efficient and requiresy dolr
times the memory space of the original size patsetn The
size of a pattern set is the sum of the pattergtkefor each
pattern in the given pattern set.

lll. FILTERING ENGINE

Proceedings of International ConferefiGSEM’13”

In this work, the overall performance strongly
depends on the filtering engine. Here, introduce tlassical
filtering algorithms for pattern matching in thelléaving
sections, then show how to merge their structurdbe same
space to improve the filter rate.

A. Wu-Manber Algorithm

Read a bad-charactar from
sinng

Position + shift value 1
il toble checking——>
=hift table checkin
-‘-‘-‘--“-____ _._.-"’-.-i'

Pas=ition + 1 Shift value == 0
[FIEHEFH!F.‘ prefix lahle m‘ldrﬁsﬁl

by hash tablo

Position + 1
“Frefix table checking =
e —

¥

Exactly-Matching, check input
siring character by character

Fig. 3 Wu-
Manber Matching process- Matching flow

TheWu-Manber algorithm is a high-performance,
multi-pattern matching algorithm based on the Beyeore
algorithm. It builds three tables in the preprotegstage: a
shift table, a hash table and a prefix table. The-Manber
algorithm is an exact-matching algorithm, but héftstable is
an efficient filtering structure. The shift table an extension
of the bad-character concept in the Boyer-Mooreritigm,
but they are not identical.

The fig.3 shows the matching process of matching
flow algorithm. The shift table gives a shift valtleat skips
several characters without comparing after a mismaifter
the shift table finds a candidate position, the Manber
algorithm enters the exact-matching phase anddsla@ted
by the hash table and the prefix table. The perdowe of the
Wu-Manber algorithm is not proportional to the sizethe
pattern set directly, but it is strongly dependemt the
minimum length of the pattern in the pattern set.

B. BloomFilter Algorithm

A Bloom filter is a space-efficient data structused
to test whether an element exists in a given d&t dlgorithm
is composed of different hash functions and a leactor of
bits. Initially, all bits are set to 0 at the prepessing stage. To

S.Shamili, B.Karthiga

504

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

add an element, the filter hashes the element byetthash
functions and gets positions of its vector.

Read a piece of text]

L

Generate hash value]

Position + 1 Position + 1

ignature checking

Fail

Match

[Exactly-Matching

Fig. 4 Bloom filter matching process- matching flow

The Bloom filter sets the bits at these positiand t
The value of a vector that only contains an elenemrialled
the signature of an element. To verify the membprsi a
particular element, the Bloom filter hashes thesmednt by the
same hash functions at run time, and it also géeera
positions of the vector.

The output of the Bloom filter can be a false peosit
but never a false negative. Therefore, some pattextthing
algorithms based on the Bloom filter must operatthvan
extra exact-matching algorithm. However, the Blofilter
still features the following advantages: 1) it ispace-efficient
data structure; 2) the computing time of the Blofilter is
scaled linearly with the number of patterns; andh®&) Bloom
filter is independent of its pattern length.

The Fig. 4 describes a typical flow of pattern

matching by Bloom filters. This algorithm fetchéwe tprefix
of a pattern from the text and hashes it to gereratignature.
Then, this algorithm verifies whether the signatasésts in
the bit vector. If it is yes, it shifts the seamsindow to the
right by one character for each comparison andatspthe
above step to filter out safe data until it findscandidate
position and launches exact-matching.

C. Shift-Sgnature Algorithm

It re-encodes the shift table to merge the sigeatur

table into a the shift-signature table. This taldes the same
size as the original shift table as its width aedgth. There
are two fields, S-flag and carry, in the shift sigire table.

Proceedings of International ConferefiGSEM’13”

The carry field has two types of data: a shift ealnd a
signature. The S-flag is used to indicate the dgpe of a
carry. The filtering engine can then filter the ttexsing a
algorithm while providing a higher filter rate.

First, the algorithm generates two tables, a $aiite
and signature table.The generation of the shiftetab the
same as in the Wu-Manber algorithm. The shift tablased
as the primary filter. The signature table couldcbesidered a
set of the bit vector of the Bloom filter, and stused for the
second-level filtering. The signature table’s gatien is
similar to the Bloom filter but is not identical.

IV. EXACT-MATCH ENGINE

The EME must verify the false positives when the
filtering engine alerts. It also identifies patterfor upper-
layer applications. Most exact-match algorithms thee two
kinds of trie structures shown in Fig. 5 loose aodnpact
tries, to establish their pattern databases. Bioghstructures
have their merits.

(b)

(@ Index Signature Shit

Posttion: 1 2 3 4 56 7 8
patem: [plalt]tle|r|n]s| 1

Bad-character

Index Signature /" Shift

,: Shift value

Fig.5
(a)table generation and (b) re-encodes of shifietigre table

Unlike loose tries, compact tries construct pattern
databases with two pointers, sibling and childreduce their
memory requirements. However, this method has fiaten
performance problems because it may search lit&fismed
by sibling pointers. Attacks can be avoided by reimg
patterns that cause attacks before constructingptiteern
database. For this reason, our exact-matching eisgin
algorithm use compact tries and propose severatisos to
mitigate the effect of algorithmic attacks.

A compact trie usually has only one entrance.
However, for multiple patterns, this method needs a
significant amount of time to search the prefix aodf a
pattern in the entrance’s sibling list. To reduearsh time,
dividing a huge trie into several lightweight tries generate
multiple entrances by hashing the root node of each

S.Shamili, B.Karthiga

505

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

lightweight trie. The generated hash values ar¢ addresses
for each lightweight trie tree. Therefore, the éxaatching

engine can easily get more entrances and havenfidgs with
short sibling lists. The exact-matching engine @

computation with memory access time. Therefore,pkim
hashing the trie to generate multiple entrances candfully

arranging the data in the memory efficiently solviae

memory gap problem at the algorithmic level.

The trie-skip mechanism is implemented by four
major fields for each trie node. The skip valueceight,
meaning that the closest candidate pattern is Heltie
current candidate by eight characters. Howeveralmse the
exact-matching engine does not always start frora th
beginning of a pattern, the jump node field indésathe first
node that the exact-matching engine should comfmaréhe
new candidate pattern after a mismatch occurs. Suféx
offset fixes the search window and notifies thecexaatching
engine, which fetches characters behind the netterpa
pointer with four characters. The jump-enable It gump
node are used to implement this jumping idea.

V. PROPOSED SYSTEM

Fig .6 state diagram of AC algorithm

The Fig.6 shows the state transition diagram ddrive
from the AC algorithm where the solid lines reprasthe
valid transitions while the dotted lines represent a tyge of
state transition called théailure transitions. The failure
transition is explained as follows.

Given a current state and an input characterAtbe
machine first checks whether there is a valid itemmsfor the
input character; otherwise, the machine jumps éontxt state
where the failure transition points. Then, the niaeh
recursively considers the same input characterl uhe
character causes a valid transition.

Proceedings of International ConferefiGSEM’13”

Due to the common substring of string patterns, the
compiled AC machine have states with similar
transitions.despite the similarity, those similéatas are not
equilent states and cannot be merged directly.his, the
functional errors can be created if those simil@tes are
merged directly. So a new mechanism can be proptased
rectify those functional errors after merging thasenilar
errors.

Fig.7 Merging similar states

The merg_FSM is a different machine from the
original state machine but with a smaller numbestafes and
transitions. A direct implementation of merg_FSMsha
smaller memory objective is to modify the AC alglon. It
can store only the state transition table of me8MFin
memory while the overall system still functions reatly as
the original AC state machine does. The new staieetsal
mechanism guides the state machine to traversehen t
merg_FSM and provides correct results as the aighC
state machine. The Fig.7 shows the merged pattdvais
reduces the memory gap which is compared with tiaz A
algorithm used.

S.Shamili, B.Karthiga

506

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

VI. SIMULATION RESULT

& /merg_femick 1

bodt

000000100000¢

000100000000

00000010

oooooor
00000100
00000110
2
@
we | 00000TI0T0

0000100101

I fsmin_s

0000000001 o¢
Imerg_femim_v 0000000000
E—— 1o

J—

& Jmerg_femick 1

Fig .8 simulation result for merg_fsm algorithm

VI. CONCLUSION

In this paper, a novel architecture for pattern
matching for network intrusion detection systemudthere,
the expected memory gap can be reduced with high
performance, while using AC algorithm created incbip
memory.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient stringratching: An aid to
bibliographic search,Commun. ACM, vol. 18, pp. 333-340, 1975.

[2] R. S. Boyer and J. S. Moore, “A fast string rebing algorithm,”
Commun. ACM, vol. 20, pp. 762-772, 1977.

[3] B. H. Bloom, “Space/time trade-offs in hash oml with allowable
errors,”Commun. ACM, vol. 13, pp. 422-426, 1970.

[4] S. Dharmapurikar, P. Krishnamurthy, and T. $rdsll, “Deep packet
inspection using parallel bloom filterd,EEE Micro, vol. 24, no. 1, pp. 52—
61, Jan. 2004.

[5] D. P. Scarpazza, O. Villa, and F. Petrini, “Reerformance DFA based
string matching on the Cell processor,” Rnoc. |EEE Int. Symp. Parallel
Distrib. Process., 2007, pp. 1-8.

[6] O. Villa, D. P. Scarpazza, and F. Petrini, “&tgrating real-time string
searching with multicore processor€dmputer, vol. 41, pp. 42-50, 2008.

[7] D. P. Scarpazza, O. Villa, and F. Petrini, “Higpeed string searching
against large dictionaries on the Cell/B.E. prooessin Proc. |IEEE Int.
Symp. Parallel Distrib. Process., 2008, pp. 1-8.

[8] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. &h “A fast
stringmatching algorithm for network processor-lshdetrusion detection
system,”ACMTrans. Embed. Comput. Syst., vol. 3, pp. 614—633, 2004.

[9] L. Tan and T. Sherwood, “A high throughput strimatching architecture
for intrusion detection and prevention,” ifroc. 32nd Annu. Int. Symp.
Comput. Arch., 2005, pp. 112-122.

[10] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigahiate packet
patternmatching using TCAM,” inProc. 12th |EEE Int. Conf. Netw.
Protocols, 2004, pp. 174-183.

Proceedings of International ConferefiGSEM’13”

[11] R. Sidhu and V. K. Prasanna, “Fast regularresgion matching using
FPGAS,” in Proc. 9th Ann. IEEE Symp. Field-Program. Custom Comput.
Mach. (FCCM), 2001, pp. 227-238.

[12] L. Tan and T. Sherwood, “A high
architecture

for intrusion detection and prevention,” ifroc. 32nd Annu. Int. Symp.
Comput. Arch. (ISCA), 2005, pp. 112-122.

throughputirey matching

S.Shamili, B.Karthiga

507

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

