
Proceedings of International Conference”ICSEM’13”

S.Shamili , B.Karthiga
503

A design of virus detection processor for embedded
network security

S.SHAMILI B.KARTHIGA

M.E.Vlsi Design(PG Scholar), Associate Professor,
Srinivasan Engineering College, Srinivasan Engineering College,
Perambalur-621212, Perambalur-621212,
TamilNadu, India TamilNadu, India
sksshamili@gmail.com. karthiga.jaya@yahoo.com.

Abstract-In an Intrusion Detection System (IDS) has
emerged as one of the most effective way of furnishing security to
those connected network and the heart of the modern intrusion
detection system is a pattern matching algorithm. A network
security application needs the ability to perform the pattern
matching to protect against attacks like viruses and spam. The
solutions for firewall are not scalable; they don’t address the
difficult of antivirus. The main work is to furnish the powerful
systematic virus detection hardware solution with minimum
memory for network security. Instead of placing the entire
patterns on a chip, a two phase antivirus processor works by
condensing as much of the important filtering information as
possible onto a chip. Thus, the proposed system is mainly
concentrated on reducing the memory gap in on chip memory
along with the stage of Exact-matching engine.

Keywords-memory gap, virus detection, network security,
embedded system

I. INTRODUCTION

To make a network environment, firewalls were first
announced to block unauthorized Internet users from
accessing resources in a network by checking the packet head
(MAC address/IP address/port number). This method
significantly reduces the probability of being attacked.
Therefore, traditional firewalls no longer furnish enough
protection. Initially, the solutions were implemented at the
end-user side but tend to be merged into firewalls to provide
multi-layered protection.

The Fig. 1 shows a typical architecture of a firewall
router. When a new connection is established, the firewall
router should scan the connection and forwards these packets
to the host after confirming that the connection is secure.

Fig.1 Architecture of firewall router

The router might initially disclaim some connections
from the firewall based on the target’s IP address and the
connection port. Then, the router would monitor the content of
web pages to prevent the user from accessing any page that
connects to malware links.

When the user wants to download a file, to ensure
that the file is not infected, the firewall must decompress this
file and check it using anti-virus programs. The firewall
routers require several time-consuming steps to provide a
secure connection.

The major contribution is to reduce the memory gap
in the on-chip memory while using external memory. Here the

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference”ICSEM’13”

S.Shamili , B.Karthiga
504

proposed algorithm used to reduce the memory gap of on-chip
memory.

II. VIRUS DETECTION PROCESSOR

 Fig.2
virus detection processor architecture

The design, shown on Fig. 2 is a two-phase pattern-
matching architecture mostly comprising the filtering engine
and the exact-matching engine. The filtering engine is a front-
end module responsible for filtering out secure data efficiently
and indicating to candidate positions that patterns possibly
exist at the first stage. The exact-matching engine is a back-
end module responsible for verifying the alarms caused by the
filtering engine. In the second stage of exact-matching engine,
only a few unsaved data need to be checked.

Both engines have individual memories for storing
significant information. For cost reasons, only a small amount
of significant information regarding the patterns can be stored
in the filtering engine’s on-chip memory. In this case, they
used a 32-kB on-chip memory for the ClamAV virus database,
which contained more than 30 000 virus codes and localized
most of the computing inside the chip.

 Conversely, the exact-matching engine not only
stores the entire pattern in external memory but also provides
information to speed up the matching process. The exact-
matching engine is space-efficient and requires only four
times the memory space of the original size pattern set. The
size of a pattern set is the sum of the pattern length for each
pattern in the given pattern set.

III. FILTERING ENGINE

In this work, the overall performance strongly
depends on the filtering engine. Here, introduce two classical
filtering algorithms for pattern matching in the following
sections, then show how to merge their structures in the same
space to improve the filter rate.

A. Wu-Manber Algorithm

 Fig. 3 Wu-
Manber Matching process- Matching flow

TheWu-Manber algorithm is a high-performance,

multi-pattern matching algorithm based on the Boyer-Moore
algorithm. It builds three tables in the preprocessing stage: a
shift table, a hash table and a prefix table. The Wu-Manber
algorithm is an exact-matching algorithm, but its shift table is
an efficient filtering structure. The shift table is an extension
of the bad-character concept in the Boyer-Moore algorithm,
but they are not identical.

The fig.3 shows the matching process of matching
flow algorithm. The shift table gives a shift value that skips
several characters without comparing after a mismatch. After
the shift table finds a candidate position, the Wu-Manber
algorithm enters the exact-matching phase and is accelerated
by the hash table and the prefix table. The performance of the
Wu-Manber algorithm is not proportional to the size of the
pattern set directly, but it is strongly dependent on the
minimum length of the pattern in the pattern set.

B. Bloom Filter Algorithm

A Bloom filter is a space-efficient data structure used
to test whether an element exists in a given set. This algorithm
is composed of different hash functions and a long vector of
bits. Initially, all bits are set to 0 at the preprocessing stage. To

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference”ICSEM’13”

S.Shamili , B.Karthiga
505

add an element, the filter hashes the element by these hash
functions and gets positions of its vector.

 Fig. 4 Bloom filter matching process- matching flow

The Bloom filter sets the bits at these positions to 1.
The value of a vector that only contains an element is called
the signature of an element. To verify the membership of a
particular element, the Bloom filter hashes this element by the
same hash functions at run time, and it also generates
positions of the vector.

The output of the Bloom filter can be a false positive
but never a false negative. Therefore, some pattern matching
algorithms based on the Bloom filter must operate with an
extra exact-matching algorithm. However, the Bloom filter
still features the following advantages: 1) it is a space-efficient
data structure; 2) the computing time of the Bloom filter is
scaled linearly with the number of patterns; and 3) the Bloom
filter is independent of its pattern length.

The Fig. 4 describes a typical flow of pattern
matching by Bloom filters. This algorithm fetches the prefix
of a pattern from the text and hashes it to generate a signature.
Then, this algorithm verifies whether the signature exists in
the bit vector. If it is yes, it shifts the search window to the
right by one character for each comparison and repeats the
above step to filter out safe data until it finds a candidate
position and launches exact-matching.

C. Shift-Signature Algorithm

It re-encodes the shift table to merge the signature
table into a the shift-signature table. This table has the same
size as the original shift table as its width and length. There
are two fields, S-flag and carry, in the shift signature table.

The carry field has two types of data: a shift value and a
signature. The S-flag is used to indicate the data type of a
carry. The filtering engine can then filter the text using a
algorithm while providing a higher filter rate.

First, the algorithm generates two tables, a shift table
and signature table.The generation of the shift table is the
same as in the Wu-Manber algorithm. The shift table is used
as the primary filter. The signature table could be considered a
set of the bit vector of the Bloom filter, and it is used for the
second-level filtering. The signature table’s generation is
similar to the Bloom filter but is not identical.

IV. EXACT-MATCH ENGINE

The EME must verify the false positives when the
filtering engine alerts. It also identifies patterns for upper-
layer applications. Most exact-match algorithms use the two
kinds of trie structures shown in Fig. 5 loose and compact
tries, to establish their pattern databases. Both trie structures
have their merits.

 Fig.5
(a)table generation and (b) re-encodes of shift-signature table

Unlike loose tries, compact tries construct pattern
databases with two pointers, sibling and child, to reduce their
memory requirements. However, this method has potential
performance problems because it may search link lists formed
by sibling pointers. Attacks can be avoided by removing
patterns that cause attacks before constructing the pattern
database. For this reason, our exact-matching engine’s
algorithm use compact tries and propose several solutions to
mitigate the effect of algorithmic attacks.

A compact trie usually has only one entrance.
However, for multiple patterns, this method needs a
significant amount of time to search the prefix node of a
pattern in the entrance’s sibling list. To reduce search time,
dividing a huge trie into several lightweight tries to generate
multiple entrances by hashing the root node of each

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference”ICSEM’13”

S.Shamili , B.Karthiga
506

lightweight trie. The generated hash values are root addresses
for each lightweight trie tree. Therefore, the exact-matching
engine can easily get more entrances and have first nodes with
short sibling lists. The exact-matching engine overlaps
computation with memory access time. Therefore, simply
hashing the trie to generate multiple entrances and carefully
arranging the data in the memory efficiently solves the
memory gap problem at the algorithmic level.

The trie-skip mechanism is implemented by four
major fields for each trie node. The skip value is eight,
meaning that the closest candidate pattern is behind the
current candidate by eight characters. However, because the
exact-matching engine does not always start from the
beginning of a pattern, the jump node field indicates the first
node that the exact-matching engine should compare for the
new candidate pattern after a mismatch occurs. The suffix
offset fixes the search window and notifies the exact-matching
engine, which fetches characters behind the new pattern
pointer with four characters. The jump-enable bit and jump
node are used to implement this jumping idea.

V. PROPOSED SYSTEM

Fig .6 state diagram of AC algorithm

The Fig.6 shows the state transition diagram derived
from the AC algorithm where the solid lines represent the
valid transitions while the dotted lines represent a new type of
state transition called the failure transitions. The failure
transition is explained as follows.

Given a current state and an input character, the AC
machine first checks whether there is a valid transition for the
input character; otherwise, the machine jumps to the next state
where the failure transition points. Then, the machine
recursively considers the same input character until the
character causes a valid transition.

Due to the common substring of string patterns, the
compiled AC machine have states with similar
transitions.despite the similarity, those similar states are not
equilent states and cannot be merged directly. In this, the
functional errors can be created if those similar states are
merged directly. So a new mechanism can be proposed to
rectify those functional errors after merging those similar
errors.

Fig.7 Merging similar states

The merg_FSM is a different machine from the
original state machine but with a smaller number of states and
transitions. A direct implementation of merg_FSM has a
smaller memory objective is to modify the AC algorithm. It
can store only the state transition table of merg_FSM in
memory while the overall system still functions correctly as
the original AC state machine does. The new state traversal
mechanism guides the state machine to traverse on the
merg_FSM and provides correct results as the original AC
state machine. The Fig.7 shows the merged patterns that
reduces the memory gap which is compared with the AC
algorithm used.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference”ICSEM’13”

S.Shamili , B.Karthiga
507

VI. SIMULATION RESULT

Fig .8 simulation result for merg_fsm algorithm

VI. CONCLUSION

In this paper, a novel architecture for pattern
matching for network intrusion detection system. Thus here,
the expected memory gap can be reduced with high
performance, while using AC algorithm created in on-chip
memory.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, pp. 333–340, 1975.
[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, pp. 762–772, 1977.
[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, 1970.
[4] S. Dharmapurikar, P. Krishnamurthy, and T. S. Sproull, “Deep packet
inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp. 52–
61, Jan. 2004.
[5] D. P. Scarpazza, O. Villa, and F. Petrini, “Peak-performance DFA based
string matching on the Cell processor,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process., 2007, pp. 1–8.
[6] O. Villa, D. P. Scarpazza, and F. Petrini, “Accelerating real-time string
searching with multicore processors,” Computer, vol. 41, pp. 42–50, 2008.
[7] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed string searching
against large dictionaries on the Cell/B.E. processor,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process., 2008, pp. 1–8.
[8] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen, “A fast
stringmatching algorithm for network processor-based intrusion detection
system,” ACMTrans. Embed. Comput. Syst., vol. 3, pp. 614–633, 2004.
[9] L. Tan and T. Sherwood, “A high throughput string matching architecture
for intrusion detection and prevention,” in Proc. 32nd Annu. Int. Symp.
Comput. Arch., 2005, pp. 112–122.
[10] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet
patternmatching using TCAM,” in Proc. 12th IEEE Int. Conf. Netw.
Protocols, 2004, pp. 174–183.

[11] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAS,” in Proc. 9th Ann. IEEE Symp. Field-Program. Custom Comput.
Mach. (FCCM), 2001, pp. 227–238.
[12] L. Tan and T. Sherwood, “A high throughput string matching
architecture
for intrusion detection and prevention,” in Proc. 32nd Annu. Int. Symp.
Comput. Arch. (ISCA), 2005, pp. 112–122.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

