
A Descriptive Formalisation of Student

Management System (SMS)

Dr. Okengwu U. A1
Department of Computer Science,

University of Port-Harcourt, Port-Harcourt.

 Nigeria

Dr.Ejiofor C. I 2
Department of Computer Science,

University of Port-Harcourt, Port-Harcourt.

Nigeria

Abstract - The formalisation of Student Management System

(SMS), can invariably contribute to the success, profitability

and customer-based approach of Educational Institutes. The

use of formal specification creates a formal approach for

specifying the underlying functions and properties of the

system. This paper has attempted to give a formal description

of the activities of a SMS Using Zed notation. The interaction

within the system is visualized using Unified Modelling

Language (UML) sequence diagrams.

Keywords: Student Mangement System (SMS), Z-Notation, UML.

1 BACKGROUND OF STUDY

Software systems are system built on the premise of

software, integrating within hardware components. These

systems over time have become so complex in term of

components integration and software usage. The reliability

of this system is the bedrock of critical safety systems

forcing developer to move toward formal methods to verify

system correctness (Rushby, 2000).

Formal methods are methods based on mathematical

notations (representations) and analysis of software. It

includes formal specification, specification analysis, proof

transformation (development) and program verification

(Spivey, 1998). The branch of mathematics utilized in

formal method is discrete mathematics and mathematical

concept based on set theory, Cartesian products, logic and

algebra (Spivey, 1992 and Spivey, 1998).

Formal proof provide a verification avenue in which the

developer can verify correctness and spot out deficiencies in

formally created methods (Romanovsky, 2013).

The utilisations of formal method create design and

implement formal systems. A formal system is a well-

defined system or logical calculus of abstract though and

concept using formalised mathematical models and

languages. Each formal system is tied to a set of primitive

symbols which finitely construct a formal language from a

set of axioms through formations and inferential rules

(Hunter, 1971). The system thus consists of valid formulas

built up through finite combinations of primitive’s symbols.

These symbols are combined to form axioms (statements) in

accordance with stated rules (Hunter, 1971). These

statements more formally be can expressed as a set of finite

symbols that can be used for constructing formulas (Hunter,

1971).

A student information system (SIS), student management

system, school administration software or student

administration system is a management information

system for education establishments to manage student data.

Student information systems provide capabilities for

registering students in courses,

documenting grading, transcripts, results of student tests and

other assessment scores, building student schedules, tracking

student attendance, and managing many other student-

related data needs in a school. A SIS should not be confused

with a learning management system or virtual learning

environment, where course materials, assignments and

assessment tests can be published electronically.

In this paper, a descriptive formalization of Student

Management System (SMS) properties is captured using Z-

notation. The choice of Z- notation as opposed to other

formalization languages was based on: Z-notation

decomposes specification into schema; enhancing brevity,

conciseness and simplicity as opposed to other formal

specification languages (Spivey, 1992; Spivey, 1998;

Richard, 1998; Bart and Robert, 2001; Aneesh et al., 2003

and Jonathan, 2003). Z notation supports a large array of

intrinsic and user-defined data types, as opposed to other

formal specification languages (Spivey, 1992; Spivey,

1998). Z schemas describe both static and dynamic

properties, as opposed to other formal specification

languages (Spivey, 1992; Spivey, 1998; Richard, 1998; Bart

and Robert, 2001; Aneesh et al., 2003 and Jonathan, 2003).

2 APPLIED MATERIALS

In achieving the aim of student management system

formalisation; Z-notation and Unified Modelling Language

(UML) serves as the core methodology tool.

Z-notation uses mathematical notation to describe in a

precise way the properties a software system must possess,

without unduly constraining the way in which these

properties are achieved (Spivey 1998, Sannella, 1998 and

Spivey, 1992). Formal specification (Mathematical notation

or Z) uses mathematical data types to model data in a system

and achieve it underlining objectives. These data types are

not oriented towards computer representation, but they obey

a rich collection of mathematical laws which make it

possible to reason effectively about the way a specified

system will behave. We use the notation of predicate logic

to describe abstractly the effect of each operation of our

system, again in a way that enables us to reason about their

behaviour.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110023
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

347

The other main ingredient in Z is a way of decomposing a

specification into small pieces called Schemas. By splitting

the specification into schemas, we can present it piece by

piece. Each piece can be linked with a commentary which

explains informally the significance of the formal

mathematics. In Z, schemas are used to describe both static

and dynamic aspects of a system (Spivey 1998). The static

aspects includes, the state it can occupy; the invariant

(quantity that is unchanged by a set of mathematical

operation) relationship that are maintained as the system

moves from states to state.

The dynamic aspect includes: the operation aspect that are

possible, the relationship between their input and outputs;

the changes of state that happen.

Software design immediately follows the requirements

engineering phase (formal method) in a software process.

Software design is the translation of the requirement

specification into useful patterns for implementation.

Unified Modeling Language (UML) is a standard modeling

language used for modeling software systems. UML was

utilized for the design of the student management system

due to its focuse on creating simple, well documented and

easy to understand software models. UML sequence

diagram shows the interaction between classes (or object) in

the system for each use case. The interaction represents the

order of messages that are exchanged between classes to

accomplish a purpose

3 APPLICATION OF FORMALISATION TO STUDENT

MANAGEMENT SYSTEM (SMS)

The application of Z-notation focuses both on the static and

dynamic aspect of the system. Z-notation also utilized

certain basic types. The following are some of the basic

types in Z [CHAR, STRING, CURRENCY, QUERY,

OBJECT, COMPONENTS, BOOLEAN:: = TRUE/FALSE,

DATA and OBJECT]. The student management system

authentic each user using his username/ID and password on

the system

The static aspects of the Student Management System

(SMS) includes: Student Registration State, Student Login

State, Accept Student Credentials, Present Student Result

while the state variables and invariant on them includes

Student: ℙ STUDENT, Registrations: ℙ REGISTRATION,

Logins: ℙ LOGIN, Result: ℙ RESULT,

registered_users: STUDENT → ℙ CREDENTIALS,

login_users: Student → ℙ Credentials, Present_result→ ℙ

Grades. The system is initialized with no prior processes as

exemplified on Figure 1

 InitSmS

 Sms

 Sms = ∅

Figure 1: SmS Initialisation

The dynamic model for SMS defines basic operations,

input-output relationship and state transitions, which

includes; Student Login, Student Registration and Transition

from Registration state to Login State. Figure 2 through

Figure 6, shows these operations.

 Add Student

∆ domRegistered_User

Student? : ℙ CREDENTIALS

Student? ∉ dom registered_users

registered_users’ = registered_user ∪

 {Student? ⟶ credentials?}

Figure 2: Add Student Schema

The Addstudent schema, shown on Figure 2, extends the

domain of registered uses by adding newly registered

students.

 DeleteStudent

∆ domRegistered_User

 student? : ℙ STUDENTS

Student? ∈ dom registered _users registered_users’ =

registered_user - ({student} credentials?)

Figure 3: DeleteStudent Schema

The DeleteStudent Schema, shown on Figure 3, shrinks the

domain of registered users by removing a registered user

(student) from the domain of registered users.

 Student Registration

 Registration : ℙ REGISTRATION

 Students?: ℙ STUDENT

 Credentials? : ℙ CREDENTIALS

∀k: student● credential? ∈ registration ^ registration’ =

registration ∪ {Student? ⟶ credentials?}

 Registration = successful
Figure 4: Registration Schema

The registration schema, shown on Figure 4, captures the

registration of individual students. These students usually

present certain credentials identifiable by the system.

 LoginStudent

 Student_ID: ℙ CREDENTIALS

 Student: ℙ PHYSICIAN

 accepted, denied: Access ∀h: Student ● u ∈ user. access!

= accepted

 dom login_users ⊆ registered_users

Figure 5: LoginPhysician Schema

The login schema, shown on Figure 5, grant access to

registered users, based on their access levels. The schema

returns the “accepted” result for a registered user.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110023
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

348

Student Result

 grades: RESULT

 result: RESULT

 Ξ domResult

 ∃ grades: result● excellent ∈ Result ∧ result ≠ 𝝓

 ∃ grades: result● very good∈ Result ∧ result ≠ 𝝓

 ∃ grades: result● good ∈ Result ∧ result ≠ 𝝓

 ∃ grades: result● fair ∈ Result ∧ result ≠ 𝝓

 ∃ grades: result● fail ∈ Result ∧ result ≠ 𝝓

 ∀ grades: result ● grades ∈ excellent ∧ very good ∧ good

∧ fair ∧ fail

 dom sms_result⊆ result
Figure 6: Result Schema

The Student Result schema, shown on Figure 6, provide five

ranking system. The predicate part receives as a request

argument and returns five results utilizing received grades.

3.1 Unified Modelling Language Design of the Student

Management System (SMS)

The interaction represents the order of messages that are

exchanged between objects to accomplish a purpose. For the

SMS system, we specify it integral part using UML

sequence diagram. Figure 7 show the sequence diagram and

the interaction between objects.

Figure 7: Sequence Diagram Modelling Student Management System

(SMS)

Figure 7, models the sequence of steps involved in the

Student Management System (SMS). The order of

appearance of the arrows indicates the order of the

activation indicating the other of flow of events / results.

 The sequence captures four main objects: User,

registration, login and result. These objects operate an

asynchronous message exchange pattern in which the

response from the preceding object activates the successive

objects. Therefore the response of registration must be

accepted before login could be activated and the response of

login must be accepted before result object could be

activated.

4 FINDINGS

Based on the ease at which the users get information through

the new formalised system, the following are revealed:

a. Eliminate and modify ambiguities in system

properties.

b. Eliminate and ratify unknown errors

c. Support multiple system processes

d. Provide user-friendliness interface

5 CONCLUSION.

Formal specification is the bedrock in eliminating

ambiguities in software systems and system requirement. In

Nigeria and African as a whole this approach has not be

implemented and accepted for most software system

opening the avenue for system failure with huge implication

such as financial loss. This research paper focuses on

providing a sample representation of formal specification

utilizing student management system as a case base. The

system design was specified utilizing UML. The results of

the finding were listed assiduously. Formal specification is

an avenue for software system which must be explored in as

much safety is involved.

REFERENCES
[1] Aneesh, K.., Sergiy V. and Aditya G. (2003), A Case Study of

Combining I* Framework and the Z Notation, retrieved online from
core.ecu.edu/vilkomirs/Papers/Vilkomir-ICEIS.pdf, April, 2015.

[2] Bart M. and Robert B. (2001), X Meets Z: Verifying Correctness In

The Presence Of POSIX Threads, retrieved online from
www.freedesktop.org/software/xcb/usenix-zxcb. pdf, May, 2015

[3] Bowen J. P., (1988), Formal Specification in Z as a design and

documentation tool. In proc. Second IEE/BCS Conference on
Software Engineering, number 290 in conference publication, pages

164-168.

[4] Bowen P., (1990), Z bibliography, Oxford University Computing
Laboratory.

[5] Hunter, G. (1971), Metalogic: An Introduction to the Metatheory of
Standard First-Order Logic, University of California Pres, 1971

[6] Jonathan, B. (2003), Formal Specification and Documentation using

Z: A Case Study Approach retrieved online
www.macs.hw.ac.uk/~gabbay/201314-F28FS/Zbook.pdf, October,

2015.

[7] Richard P. (1998), Specification and Refinement using a
Heterogeneous Notation for Concurrency and Communication,

retrieved online from se.inf.ethz.ch/old/teaching /ws2005

/0273/slides/formalMethods.pdf
[8] Romanovsky, A., Thomas, (2013), Industrial Deployment of System

Engineering Methods. Springer-Verlag Berlin Heidelberg (2013)

[9] Rushby, J. (2000), Disappearing Formal Methods. In: High-Assurance
Systems Engineering Symposium, Association for Computing

Machinery (2000) 95–96

 getRegistration ()

 successful

requestlogin ()

successful

requestresult

successful ()

User registrati

on

login result

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110023
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

349

[10] Sannella D., (1988), “A Survey of formal software development

methods”, appeared in Software Engineering: A European

Perspective, A. McGettrick and R. Thayer (eds.), IEEE Computer

Society Press, pp 281-297, 1993.

[11] Spivey J. M. (1992), “The Z Notation: A Reference Manual, 2nd
Edition”, Prentice Hall International (UK) limited, United Kingdom.

[12] Spivey J. M. (1998), “The Z Notation: A Reference Manual”, Oxford,

United Kingdom.
[13] Stuart R., and Norvig P. (1995), “Artificial Intelligence: A Modern

Approach”, Prentice Hall (UK) International.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110023
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

350

