Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

A Customized RISC-V
Architecture for KNN Algorithm

Ravi Teja Kuruba
Dept. of Electronics and Communication
BMS College of Engineering
Bengaluru, India

Abstract— The growing demand for embedded machine learning
applications necessitates energy-efficient and high-performance
computing solutions. This paper proposes a customized RISC-V
architecture optimized for the k-Nearest Neighbor (k-NN)
algorithm, a foundational method in pattern recognition and
classification. By extending the open-source RISC-V ISA with
custom instructions and a streamlined microarchitecture, the
design targets the key computational elements of k-NN, including
Euclidean distance calculation and class label sorting, with a focus
solely on simulation-based verification of the architecture’s
efficiency and functionality. The entire design was modeled and
verified using Verilog HDL simulations. Through these
simulations, we evaluated the performance and control flow of the
proposed design. The simulation results highlight notable
improvements in execution speed and theoretical energy
efficiency, validating the effectiveness of the customized datapath,
register file, and arithmetic units. This work demonstrates the
architecture's potential for deployment in energy-constrained
embedded environments such as loT and edge computing
platforms.

Keywords— RISC-V, k-NN, Machine Learning, Custom ISA,
Embedded Systems.

I. INTRODUCTION

The rapid proliferation of smart devices and edge computing
platforms has fueled an increasing demand for machine learning
applications capable of delivering real-time performance within
energy-constrained environments. Algorithms such as image
recognition, pattern classification, and anomaly detection are
now integral to numerous sectors, including healthcare
monitoring, industrial automation, and smart surveillance. These
applications often involve processing large datasets and
performing complex mathematical computations, which impose
significant burdens on conventional general-purpose processors.
Traditionally, such computational tasks are offloaded to
dedicated hardware accelerators that provide significant
performance gains. However, many existing accelerators are
tightly coupled with proprietary instruction set architectures
(ISAs) and lack the flexibility required to adapt to evolving
algorithmic needs. This dependence on vendor-specific
solutions also leads to challenges such as limited extensibility,
interoperability issues across platforms, and increased
development costs due to vendor lock-in.RISC-V, an open-
source and modular ISA, has emerged as a promising
alternative, offering developers the freedom to customize both
the instruction set and the microarchitecture to suit specific
application requirements. Its extensibility and open nature

IJERTV 141 S090042

Dr. Shachi P
Dept. of Electronics and Communication
BMS College of Engineering
Bengaluru, India

enable the creation of domain-specific accelerators that can
efficiently execute complex algorithms like the k-Nearest
Neighbor (k-NN) while addressing power, performance, and
area trade-offs. This paper proposes a dedicated hardware
accelerator for the k-NN algorithm built on a customized RISC-
V architecture. The k-NN algorithm, widely used in
classification and clustering tasks, involves intensive distance
computations and sorting operations that are computationally
expensive on conventional processors. By incorporating
application-specific custom instructions and optimizing the
datapath for the core operations of k-NN, the proposed
accelerator aims to enhance computational throughput and
energy efficiency. The architecture is modeled and verified
entirely through simulation, laying a strong foundation for future
hardware realizations. This work proposes a dedicated k-NN
accelerator based on a customized RISC-V architecture,
designed for energy-efficient real-time processing in edge
device.

Il. LITRATURE SURVEY

In[1], J. Park et al. (2024) present a low-power multicore RISC-
V processor architecture designed for energy-constrained 10T
end-nodes. Their main contribution is the implementation of a
shared lightweight floating-point unit (FPU) across multiple
cores, significantly reducing hardware redundancy and area
overhead while maintaining sufficient performance for signal
processing and embedded Al tasks. The authors utilize RISC-
V’s modularity to implement fine-grained power management
techniques, such as clock gating and selective resource
activation, reducing both static and dynamic power
consumption. FPGA-based experiments demonstrate that their
design achieves a strong balance between performance and
energy efficiency, outperforming traditional multicore designs
with separate FPUs. This research informs the current thesis by
providing key strategies for shared-resource architecture and
power optimization, aiding in the design of an energy-efficient
RISC-V hardware accelerator for the k-Nearest Neighbor (k-
NN) algorithm while meeting real-time inference requirements.
In [2], M. H. Yacoub et al. (2022) propose a reconfigurable
hardware architecture for implementing the k-Nearest Neighbor
(k-NN) algorithm on FPGA, focusing on improving execution
speed and reducing power consumption in classification tasks.
The design leverages FPGA parallelism to accelerate distance
calculations and optimize memory access, which are the most
compute-intensive parts of k-NN. Through pipelined operations

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

and tailored control logic, the architecture achieves significant
improvements in processing time and energy efficiency
compared to traditional software implementations.
Experimental results show substantial throughput gains, making
it well-suited for real-time and embedded machine learning
applications. This work is highly relevant to the current thesis,
as it demonstrates the effectiveness of offloading k-NN to
specialized hardware and provides a strong foundation for
integrating similar performance-optimized modules into a
RISC-V-based accelerator with custom instructions and control
flow for low-latency, energy-efficient k-NN execution.

In [3], A. Kamaleldin, S. Hesham, and D. Géhringer (2020)
propose a modular many-core architecture based on the RISC-V
instruction set, aimed at FPGA-based hardware accelerators for
high-performance parallel computing. The design emphasizes
modularity and scalability, allowing developers to customize
processing cores and interconnects for specific application
needs. Each core is configurable, supporting custom extensions
and lightweight control units, which enhances adaptability to
various workloads. By leveraging RISC-V’s open and
extensible nature, the architecture enables flexible core
configurations and efficient memory hierarchies, optimizing
resource use in FPGA implementations. Experimental results
show strong performance and efficient area utilization,
especially for parallel tasks. This study is highly relevant to the
current thesis, as it demonstrates how RISC-V’s modular design
enables scalable hardware accelerators, supporting the
integration of k-NN-specific instructions and datapath elements
into a RISC-V single-cycle processor for efficient, low-latency
machine learning inference at the edge.

In [4], H. Faeq and S. Sarkar (2024) present the design and
FPGA implementation of a five-stage pipelined RISC-V
processor, targeting improved execution speed and resource
efficiency for embedded applications. Their design incorporates
the classic pipeline stages—Instruction Fetch, Decode, Execute,
Memory Access, and Write Back—along with hazard detection
and forwarding logic to maintain smooth instruction flow.
Implemented on a Basys-3 FPGA board, the processor achieved
a clock frequency nearly 2.8 times higher than a comparable
single-cycle design, highlighting the performance gains of
pipelining. Synthesis results show efficient FPGA resource
usage with a good balance between speed, area, and power
consumption. This study is relevant to the current thesis by
illustrating how RISC-V architectural enhancements can boost
throughput in FPGA processors. Although the thesis uses a
single-cycle design for simplicity and predictable timing in k-
NN acceleration, this work lays the groundwork for future
pipelined designs to handle more complex machine learning
models and stricter real-time requirements.

In [5], Y. He (2021) presents the design and FPGA
implementation of a convolutional neural network (CNN)
hardware accelerator based on a RISC-V architecture, aimed at
efficient deep learning inference in embedded systems. Using
high-level synthesis (HLS), the design integrates hardware
modules specialized for CNN tasks such as convolution,
pooling, and activation functions, while leveraging RISC-V’s
open framework for customizable extensions and efficient
control logic. The implementation demonstrates significant
performance gains and reduced latency compared to software
execution. This work is relevant to the current thesis, as it

IJERTV 141 S090042

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

highlights the feasibility of adapting RISC-V for machine
learning accelerators. Although the focus is on CNN rather than
k-NN, the core idea of hardware customization for task-specific
acceleration aligns with the thesis goal. The use of FPGA
prototyping and focus on resource-efficient design further
support the methodology adopted in this project.

In [6], S. P. Manchala et al. (2024) propose a RISC-V-based
hardware accelerator designed to implement the k-Nearest
Neighbor (k-NN) algorithm, focusing on performance, area
efficiency, and low power consumption. The architecture
introduces custom instruction extensions to efficiently handle
key k-NN operations such as distance calculation, sorting, and
label voting. By leveraging the flexibility of the open-source
RISC-V ISA, the design reduces clock cycles and hardware
resource usage. Implemented on an FPGA platform, the
accelerator achieves significant improvements in latency and
power efficiency compared to general-purpose processors.
Optimized use of look-up tables (LUTSs) and flip-flops further
enhances its suitability for edge Al applications. This work is
highly relevant to the current thesis, as it validates the approach
of customizing a RISC-V processor for k-NN acceleration,
providing a close reference for integrating custom datapaths and
instructions to enable real-time, efficient machine learning
inference in embedded systems.

In [7], B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini
(2022) present a comprehensive survey of hardware
accelerators, providing a taxonomy based on design aspects,
host coupling, architectural features, and software
considerations. The paper reviews around 100 accelerators
developed over the past decade, analyzing trends such as
heterogeneity, reconfigurability, and specialization for Al
applications. It highlights key design challenges, including
power efficiency, scalability, programmability, and integration
complexity, and emphasizes the growing role of open-source
frameworks like RISC-V in accelerating innovation. This survey
is highly relevant to the current thesis, as it contextualizes the
importance of application-specific customization in hardware
accelerators. It supports the project’s focus on designing a k-
NN-specific RISC-V processor and provides a broader
perspective on the evolution of efficient, Al-driven, real-time
embedded systems.

In [8] E. Cui, T. Li, and Q. Wei (2023) present an in-depth
survey of the various instruction set architecture (ISA)
extensions developed for the RISC-V platform, categorizing
them across key domains such as security, artificial intelligence
(Al), floating-point computation, vector processing, and
domain-specific applications. The authors systematically
analyze the motivations, design methodologies, and
implementation trade-offs involved in extending the base RISC-
V ISA, highlighting how these extensions contribute to
performance improvements, reduced instruction overhead, and
enhanced adaptability in hardware accelerators. The paper also
discusses standard and custom extensions, providing insights
into how open-source initiatives have facilitated the proliferation
of modular and application-tailored processors. This work is
directly relevant to the current thesis, as it supports the
integration of custom instructions—such as "SUBMUL" and
"FSQRT —within the RISC-V processor designed for
accelerating k-NN computations. By grounding the architectural
decisions in broader ISA extension practices, this survey

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

reinforces the technical validity and extensibility of the proposed
hardware design, while also highlighting the flexibility of RISC-
V in enabling efficient domain-specific acceleration.

In [9], T. Bhattacharyya, P. Ghosal, Sonam, and S. Deb (2024)
propose "Vigil," a hybrid SoC architecture based on RISC-V for
a two-stage fall detection system combining convolutional
neural networks (CNNs) and k-Nearest Neighbor (k-NN)
algorithms. Targeted at FPGA platforms for real-time inference,
the design emphasizes hardware modularity, low latency, and
efficient resource use. The CNN module extracts features from
input data, while the k-NN algorithm performs classification
using custom logic integrated within the RISC-V SoC. The
authors report improved accuracy and responsiveness, making
the solution suitable for embedded health-monitoring
applications. This work is highly relevant to the current thesis,
as it demonstrates practical k-NN integration in a RISC-V
processor for real-time, edge-based Al inference, and provides
architectural insights for extending the project toward multi-
model, reconfigurable embedded accelerators.

In [10], RISC-V International’s official platform serves as the
central repository and community hub for the open-source
RISC-V instruction set architecture, providing technical
specifications, reference implementations, and collaborative
resources. It details the modular structure of the RISC-V ISA,
including base integer sets and a wide range of standard and
custom extensions, enabling flexible, domain-specific processor
designs. This source is foundational to the current thesis, as it
provides the authoritative specifications for designing and
validating the customized RISC-V processor aimed at k-NN
acceleration. The open and extensible nature of RISC-V
supports the thesis’s goal of implementing custom instructions
and low-power hardware features, offering both theoretical
guidance and practical implementation support.

In [11], RISC-V International’s official technical documentation
provides the foundational specifications for the RISC-V
Instruction Set Architecture (ISA), including the base integer set
(RV321/RV64I), standard extensions (such as M, F, D, A, C, and
V), and guidelines for custom instruction encoding and privilege
levels. This comprehensive resource serves as a reference point
for compliant hardware implementations, ensuring
interoperability, modularity, and openness across processor
designs. The documentation also details encoding rules, pipeline
behavior expectations, exception handling, and ISA versioning,
making it essential for developers seeking to create reliable and
extensible hardware systems. In the context of this thesis, which
involves designing a customized single-cycle RISC-V processor
for accelerating the k-Nearest Neighbor (k-NN) algorithm, the
technical specification was indispensable in correctly
formulating and encoding custom instructions like 'SUBMUL",
"FSQRT", and other k-NN-specific operations. It ensured
architectural compliance and guided the integration of custom
control signals and datapaths into the processor’s ALU and
instruction decode modules.

In [12], L. Wang, Y. Zhao, and H. Li (2023) present a RISC-V-
based hardware accelerator designed for efficient Euclidean
distance computation—a key operation in machine learning
algorithms like k-Nearest Neighbor (k-NN). The architecture
integrates custom datapath units and instruction extensions into
the RISC-V core to optimize squaring, summation, and square
root operations. Implemented on an FPGA, it achieves

IJERTV 141 S090042

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

significant reductions in computation latency and power
consumption compared to general-purpose processors. The
study demonstrates that hardware-level optimization of
mathematical primitives offers major performance benefits for
real-time inference. This work is directly relevant to the current
thesis, as it validates the approach of extending RISC-V with
specialized arithmetic logic for k-NN acceleration, supporting
key design decisions such as the inclusion of custom instructions
like SUBMUL and FSQRT to improve Euclidean distance
calculation efficiency.

I11. METHODOLOGY

This project aims to develop a RISC-V based hardware
accelerator optimized for k-nearest neighbors (k-NN)
computations, starting with defining objectives and conducting
a thorough literature review to identify gaps in current
implementations. Key challenges, such as computational
complexity and energy efficiency, were addressed by
formulating a problem statement and research objectives. The
design phase involved creating a high-level and detailed
microarchitecture tailored for k-NN, followed by HDL
description and simulation to verify functionality.

A. Instruction Fetch Unit (IFU)

The processor operates on a single-cycle execution model,
where each instruction is fetched, decoded, executed, and stored
within one clock cycle to maximize efficiency. The Instruction
Fetch Unit (IFU) retrieves instructions from memory using the
Program Counter (PC), increments the PC for sequential
execution, and supplies the instruction to the Control Unit. The
Control Unit decodes the instruction and generates the necessary
control signals to guide the datapath. The datapath connects the
Register Files, Arithmetic Logic Unit (ALU), and Block RAM
(BRAM). Register Files store operands and intermediate results,
while the ALU performs arithmetic operations like those needed
for distance calculations in the k-NN algorithm. BRAM is used
to store datasets, intermediate distances, and output results.
Together, these components enable efficient, step-by-step
execution of the k-NN algorithm in a streamlined and
predictable manner.

4—>
———PC—>

Fig 1 Instruction Fetch Unit

—Reset—»|

PC+4—>| Instruction Memory +——Instruction Code—»

B. Control Unit

Fig 2 illustrates the Control Unit, which plays a pivotal role in
ensuring the seamless execution of instructions across the
processor architecture. Once an instruction is fetched by the
IFU, the Control Unit interprets its opcode and generates the
necessary control signals required to activate specific
components in the datapath. These control signals are essential
in directing the flow of data and orchestrating operations across
various hardware modules. The Control Unit is designed to
decode both standard RISC-V instructions and the customized
instructions introduced to optimize k-NN operations, such as

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

SUBMUL, SQRT, and sorting-related commands. Upon
decoding, the unit determines the nature of the instruction—
whether it involves arithmetic computation, memory access, or
conditional branching—and configures the ALU, Register File,
and memory blocks accordingly. It ensures that operands are
selected correctly, memory is accessed efficiently, and results
are routed to the correct destinations. Moreover, in a single-
cycle architecture, the precision and responsiveness of the
Control Unit are critical, as it must issue correct signals within
one clock cycle. The timing and logical correctness of these
signals guarantee proper execution of complex operations like
Euclidean distance computation and classification voting in the
k-NN algorithm. By tightly coordinating all hardware modules,
the Control Unit maintains synchronization, reduces execution
delays, and contributes significantly to the overall efficiency
and reliability of the processor.

—ALU Contro—>»

Control Unit

Opcodes—»

——Write Reg—>»

Fig 2 Control Unit

C. Datapath

The Datapath module in the above fig 3 is the network that
connects all functional units (Register Files, ALU, Memory) and
carries out the data processing. It includes buses and
multiplexers to route data between different components,
facilitating the movement of data needed for computations. The
Datapath ensures that data flows smoothly between the units,
enabling efficient execution of instructions. The Datapath
module serves as the core computational engine within the
processor architecture, integrating essential components such as
the Arithmetic Logic Unit (ALU), Register Files, and two Block
RAMs (BRAMSs) for data and label storage. This module
orchestrates the flow of data and instructions through the
processor pipeline, enabling efficient computation and data
manipulation.

Label Memory |—Label

—ALU Contro»{

—P Register File Custom ALU —ALU Result—»

Data—

Data Memory —Data

Fig 3 Datapath

D. Register Files

The Register Files, embedded within the datapath, act as high-
speed temporary storage used to hold operands, intermediate
results, and final outputs of computations. For the k-NN
algorithm, the register files are especially critical as they store
the dataset features, squared differences, and classification
labels throughout the execution process. The register file
consists of 32 registers, each 32 bits wide, and supports

IJERTV 141 S090042

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

simultaneous dual-read operations alongside a single write
operation per clock cycle. This dual-read capability ensures that
two operands can be fetched concurrently, which is essential for
arithmetic instructions like addition, subtraction, and the custom
SUBMUL operation used in squared distance calculation.
Writing to the register file is performed within the same clock
cycle after an ALU computation or data memory fetch, making
the system highly efficient for iterative computations such as
those required in k-NN. The seamless interaction between the
ALU and the Register Files ensures that data is promptly
available for the next stage in execution, whether it be
accumulation, square root calculation, or sorting. Overall, the
tightly integrated datapath and register file design significantly
contribute to the architecture's throughput and effectiveness in
executing machine learning tasks like k-NN.

E. Arithmetic Logic Unit (ALU)

Fig 4 illustrates the Arithmetic Logic Unit (ALU), a critical
component responsible for executing core arithmetic and logic
operations necessary for implementing the k-NN algorithm.
The ALU in this architecture supports both integer and floating-
point operations and has been enhanced with customized
control signals to perform additional tasks such as squared
subtraction and majority classification. The ALU performs
standard integer operations like addition and multiplication,
identified by control signals 0110 and 0111, respectively. These
are used during index management and loop control in
instruction execution. In the context of k-NN, floating-point
arithmetic is central, and the ALU supports essential floating-
point operations such as addition (control: 0001), square root
(control: 0010), and a custom subtraction followed by squaring
operation (SUBMUL) with control signal 0000, used to
compute squared differences between feature values.
Additionally, a unique feature of this ALU is its capability to
handle sorting and majority voting operations using control
signal 0011. This specialization enables efficient execution of
the final classification step of the k-NN algorithm, where
distances are sorted and the most frequent label among the
nearest neighbors is determined.

By consolidating multiple arithmetic and classification
functions into a single unit and enabling support for both
standard and custom operations, the ALU significantly
contributes to reducing the instruction count and improving
overall execution efficiency for machine learning workloads on
this custom RISC-V architecture.

= Dala = Custom ALU

(SUBMUL,Sqrt &Sort [—ALU Result-»
and Majority)

Control

A 4

—Data 2—p

Fig 4 Arithmetic Logic Unit

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

F. Block Memeory

Block Memory is used to store the dataset, intermediate
distances, and final results in k-NN computations. It includes
memory for dataset points, the query point, and computed
distances, facilitating efficient read and write operations crucial
for distance calculations and sorting.

Functional Operation

Data Processing Flow:

—Instruction Fetch: The Datapath fetches instructions via the
Instruction Fetch Unit (IFU), directing them for execution.
—Data Operations; ALU operations perform arithmetic
calculations and logical com- parisons on data from Register
Files or BRAMs.

—Data Storage: Dedicated BRAMs store and retrieve data points
and labels, supporting operations like sorting, classification, or
pattern recognition.

G. Custom Instructions Added

1.suBMUL

Instruction Details:

* Format: Custom R-type

* Description: Performs subtraction between two floating-point
values from source reg- isters rs1 and rs2. The resulting value
is then multiplied by itself, and the final result is stored in
destination register rd.

* Operation: rd = (rs1 - rs2) * (rsl - rs2)

2.MKTFM (Move K to Sort Module)

Instruction Details:

* Format: I-type

* Description: Moves a specific value (k) from the register file
to the Sort module for sorting operations.

* Operation: rd = rs1 + imm, where imm = 0

3.MLTFM (Move Label to Sort Module)

Instruction Details:

* Format: I-type

* Description: Moves label information to the Sort module,
useful for categorization during sorting.

* Operation: rd = rs1 + imm, where imm = 0

4.MSTFM (Move Square Root to Sort Module)

Instruction Details:

* Format: I-type

* Description: Moves a computed square root value to the Sort
module, essential for distance calculations in sorting.

* Operation: rd = rs1 + imm, where imm = 0

IV. RESULTS & DISCUSSION

The final implementation results confirm that the proposed
KNN processor achieves both power efficiency and timing
stability, making it a strong candidate for energy-constrained
machine learning applications. The total on-chip power
consumption is 0.1 W, with dynamic power accounting for only
0.019 W, primarily used by the datapath during the Euclidean
distance calculation. Static power makes up the majority of the
total, as expected in FPGA-based implementations. The power

IJERTV 141 S090042

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

is mostly spent on logic and signal switching, each contributing
about 38%, while DSP operations contribute 15%, and clocks
and 1/0Os consume very little power. Thermally, the processor
operates safely at a junction temperature of 25.2°C, well below
critical limits, ensuring the design’s suitability for embedded
environments. The overall power estimate was produced with
medium confidence, suggesting that the simulated activity data
used reflects realistic usage. From a timing perspective, the
design meets all specified timing constraints, with no failing
endpoints in setup, hold, or pulse width analysis. The worst
negative slack (WNS) of 92.206 ns is positive, indicating that
the design can comfortably meet the required clock period
(even for low-frequency operation like 10 MHz). Similarly, the
hold and pulse width slack values (0.274 ns and 49.6 ns,
respectively) confirm that the internal timing of the design is
well-balanced and robust. Together, these results demonstrate
that the proposed KNN processor is a low-power, thermally
safe, and timing-correct solution, making it highly suitable for
machine learning acceleration on edge devices or portable
embedded platforms where power and thermal budgets are
critical.

Fig 5 Simulation Output

Summary

Power analysis from Implemented netlist. Activity On-Chip Power

derived from constraints files, simulation files or

vectorless analysis. 19% Dynamic: 0.019W (19%
Total On-Chip Power: 01w Clacks <0.001 W
Design Power Budget: Not Specified 3 Signals: 0.007W (38%
Process: 28% Logic: 0.007 W (38%
Power Budget Margin: N/A 81% DSP DO03W (15%
Junction Temperature: 25.2°C 15% 1/0: 0.001 W
Thermal Margin: 59.8°C (31.6 W)

Ambient Temperature: 250°C Device Static 008TW (BT
Effective BJA: 1.9°C/W

Power supplied to off-chip devices: 0W
Confidence level: Medium

Launch Power Constraint Advisor to find and fix
invalid switching activity

Fig 6 Power Analysis of Implemented Customized Knn
Algorithm.

Design Timing Summary

Setup Hold Pulse Width

Worst Negative Slack (WNS): 92.206 ns

Total Negative Slack (TNS): ~ 0.000 ns

Worst Hold Slack (WHS): Worst Pulse Width Slack (WPWS):

Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns

Number of Failing Endpoints 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0

Total Number of Endpoints: 1031 Total Number of Endpaints: 1031 Total Number of Endpoints: 1064

Al user specified timing constraints are met.

Fig 7 Timing Summary of Implemented Customized Knn Algorithm.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://lwww.ijert.org

[1]

[2]

(3]

(4]

(5]

(6]

(7

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

J. Park, K. Han, E. Choi, J.-J. Lee, K. Lee, and W. Woo, “Designing Low-
Power RISC-V Multicore Processors with a Shared Lightweight Floating-
Point Unit for [oT Endnodes,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 71, no. 9, pp. 3593-3603, Sep. 2024.

M. H. Yacoub, S. M. Ismail, L. A. Said, A. H. Madian, and A. G. Radwan,
“Reconfigurable hardware implementation of K-nearest neighbor
algorithm on FPGA,” AEU - International Journal of Electronics and
Communications, vol. 138, 2022.

A. Kamaleldin, S. Hesham, and D. Gohringer, “Towards a Modular
RISC-V Based Many-Core Architecture for FPGA Accelerators,” IEEE
Access, vol. 8, pp. 148812-148826, 2020.

H. Faeq and S. Sarkar, “Design and FPGA Implementation of Five Stage
Pipelined RISC-V Processor,” in Proc. IEEE 9th Int. Conf. for
Convergence in Technology (I12CT), Pune, India, 2024.

Y. He, “Design and implementation of convolutional neural network
accelerator based on RISC-V,” J. Phys.: Conf. Ser., vol. 1871, no. 1, p.
012073, Apr. 2021.

S. P. Manchala, S. Ranganath, V. Anandi, S. T. P., S. Kamath, and S.
Bhattacharya, “RISC-V Architecture Based Hardware Accelerator for
kNN,” in Proc. 5th Int. Conf. on Circuits, Control, Communication and
Computing (14C), 2024.

B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, “A Survey on
Hardware Accelerators: Taxonomy, Trends, Challenges, and
Perspectives,” Journal of Systems Architecture, vol. 132, pp. 102812, Jun.
2022.

E. Cui, T. Li, and Q. Wei, “RISC-V Instruction Set Architecture
Extensions: A Survey,” IEEE Access, vol. 11, pp. 3601236033, 2023.
T. Bhattacharyya, P. Ghosal, Sonam, and S. Deb, “Vigil: A RISC-V SoC
Architecture for 2-fold Hybrid CNN-kNN Based Fall Detector
Implementation on FPGA,” in Proc. 2024 37th Int. Conf. on VLSI Design
and 23rd Int. Conf. on Embedded Systems (VLSID), 2024.

RISC-V International, “Open Source Architecture,” [Online]. Available:
https://community.riscv.org/ .

RISC-V International, “RISC-V Technical Documentation,” \[Online].
Available:[https:/riscv.org/technical/specifications/]
(https://riscv.org/technical/specifications/). \[Accessed: Mar. 7, 2025].
L. Wang, Y. Zhao, and H. Li, “Design and Implementation of RISC-V
Based Accelerator for Euclidean Distance Calculation,” in Proc. Int. Conf.
on Embedded Systems and Applications (ESA), 2023.

B. W. Mezger, D. A. Santos, L. Dilillo, C. A. Zeferino, and D. R. Melo,
“A Survey of the RISC-V Architecture Software Support,” IEEE Access,
vol. 10, pp. 51394-51411, May 2022.

P. D. Schiavone, M. Gautschi, A. Traber, I. Loi, A. Pullini, D. Rossi, E.
Flamand, and L. Benini, “Slow and steady wins the race? A comparison
of ultra-low-power RISC-V cores for Internet-of-Things applications,” in
Proc. 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Thessaloniki, Greece, 2017,
pp. 1-8, doi: 10.1109/PATMOS.2017.8106976.

C. Tain, S. Patil, and H. Al-Asaad, “Survey of Verification of RISC-V
Processors,” Journal of Electronic Testing: Theory and Applications, vol.
41, pp. 111-138, May 2025.

[14] Z. Zhang, W. Li, and L. Zhang, “FPGA-Based Acceleration of k-
NN for Real-Time Applications,” IEEE Access, vol. 11, pp. 43012—
43025, 2023.

M. Abate, C. Giordano, and D. Rossi, “Open Hardware Accelerators for
Edge Machine Learning: A Survey,” IEEE Transactions on Emerging
Topics in Computing, early access, 2024.
doi:10.1109/TETC.2024.000123.

D. Rossi, F. Conti, and L. Benini, “An Ultra-Low Power RISC-V Core
for Energy-Efficient Al Edge Applications,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 13, no. 2, pp. 342-354, Jun. 2023.

A. Rahimi, M. Shoaib, and R. K. Gupta, “Enabling Scalable and Energy-
Efficient Embedded Machine Learning Using RISC-V Accelerators,”
ACM Trans. Embedded Comput. Syst., vol. 22, no. 3, pp. 1-25, Mar.
2023.

Y. Yang, Q. Cheng, and D. Wu, “Efficient Sorting and Label Prediction
in Hardware Accelerators for k-NN on FPGA,” Microprocessors and
Microsystems, vol. 93, 104736, Jan. 2023.

IJERTV 141 S090042

I SSN: 2278-0181
Vol. 14 I ssue 09, September - 2025

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org

