
A Customized RISC-V

Architecture for KNN Algorithm

Ravi Teja Kuruba
Dept. of Electronics and Communication

BMS College of Engineering

Bengaluru, India

Dr. Shachi P

Dept. of Electronics and Communication
BMS College of Engineering

Bengaluru, India

Abstract— The growing demand for embedded machine learning

applications necessitates energy-efficient and high-performance

computing solutions. This paper proposes a customized RISC-V

architecture optimized for the k-Nearest Neighbor (k-NN)

algorithm, a foundational method in pattern recognition and

classification. By extending the open-source RISC-V ISA with

custom instructions and a streamlined microarchitecture, the

design targets the key computational elements of k-NN, including

Euclidean distance calculation and class label sorting, with a focus

solely on simulation-based verification of the architecture's

efficiency and functionality. The entire design was modeled and

verified using Verilog HDL simulations. Through these

simulations, we evaluated the performance and control flow of the

proposed design. The simulation results highlight notable

improvements in execution speed and theoretical energy

efficiency, validating the effectiveness of the customized datapath,

register file, and arithmetic units. This work demonstrates the

architecture's potential for deployment in energy-constrained

embedded environments such as IoT and edge computing

platforms.

Keywords— RISC-V, k-NN, Machine Learning, Custom ISA,

Embedded Systems.

I. INTRODUCTION

The rapid proliferation of smart devices and edge computing

platforms has fueled an increasing demand for machine learning

applications capable of delivering real-time performance within

energy-constrained environments. Algorithms such as image

recognition, pattern classification, and anomaly detection are

now integral to numerous sectors, including healthcare

monitoring, industrial automation, and smart surveillance. These

applications often involve processing large datasets and

performing complex mathematical computations, which impose

significant burdens on conventional general-purpose processors.

Traditionally, such computational tasks are offloaded to

dedicated hardware accelerators that provide significant

performance gains. However, many existing accelerators are

tightly coupled with proprietary instruction set architectures

(ISAs) and lack the flexibility required to adapt to evolving

algorithmic needs. This dependence on vendor-specific

solutions also leads to challenges such as limited extensibility,

interoperability issues across platforms, and increased

development costs due to vendor lock-in.RISC-V, an open-

source and modular ISA, has emerged as a promising

alternative, offering developers the freedom to customize both

the instruction set and the microarchitecture to suit specific

application requirements. Its extensibility and open nature

enable the creation of domain-specific accelerators that can

efficiently execute complex algorithms like the k-Nearest

Neighbor (k-NN) while addressing power, performance, and

area trade-offs. This paper proposes a dedicated hardware

accelerator for the k-NN algorithm built on a customized RISC-

V architecture. The k-NN algorithm, widely used in

classification and clustering tasks, involves intensive distance

computations and sorting operations that are computationally

expensive on conventional processors. By incorporating

application-specific custom instructions and optimizing the

datapath for the core operations of k-NN, the proposed

accelerator aims to enhance computational throughput and

energy efficiency. The architecture is modeled and verified

entirely through simulation, laying a strong foundation for future

hardware realizations. This work proposes a dedicated k-NN

accelerator based on a customized RISC-V architecture,

designed for energy-efficient real-time processing in edge

device.

II. LITRATURE SURVEY

In [1], J. Park et al. (2024) present a low-power multicore RISC-

V processor architecture designed for energy-constrained IoT

end-nodes. Their main contribution is the implementation of a

shared lightweight floating-point unit (FPU) across multiple

cores, significantly reducing hardware redundancy and area

overhead while maintaining sufficient performance for signal

processing and embedded AI tasks. The authors utilize RISC-

V’s modularity to implement fine-grained power management

techniques, such as clock gating and selective resource

activation, reducing both static and dynamic power

consumption. FPGA-based experiments demonstrate that their

design achieves a strong balance between performance and

energy efficiency, outperforming traditional multicore designs

with separate FPUs. This research informs the current thesis by

providing key strategies for shared-resource architecture and

power optimization, aiding in the design of an energy-efficient

RISC-V hardware accelerator for the k-Nearest Neighbor (k-

NN) algorithm while meeting real-time inference requirements.

In [2], M. H. Yacoub et al. (2022) propose a reconfigurable

hardware architecture for implementing the k-Nearest Neighbor

(k-NN) algorithm on FPGA, focusing on improving execution

speed and reducing power consumption in classification tasks.

The design leverages FPGA parallelism to accelerate distance

calculations and optimize memory access, which are the most

compute-intensive parts of k-NN. Through pipelined operations

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

and tailored control logic, the architecture achieves significant

improvements in processing time and energy efficiency

compared to traditional software implementations.

Experimental results show substantial throughput gains, making

it well-suited for real-time and embedded machine learning

applications. This work is highly relevant to the current thesis,

as it demonstrates the effectiveness of offloading k-NN to

specialized hardware and provides a strong foundation for

integrating similar performance-optimized modules into a

RISC-V-based accelerator with custom instructions and control

flow for low-latency, energy-efficient k-NN execution.

In [3], A. Kamaleldin, S. Hesham, and D. Göhringer (2020)

propose a modular many-core architecture based on the RISC-V

instruction set, aimed at FPGA-based hardware accelerators for

high-performance parallel computing. The design emphasizes

modularity and scalability, allowing developers to customize

processing cores and interconnects for specific application

needs. Each core is configurable, supporting custom extensions

and lightweight control units, which enhances adaptability to

various workloads. By leveraging RISC-V’s open and

extensible nature, the architecture enables flexible core

configurations and efficient memory hierarchies, optimizing

resource use in FPGA implementations. Experimental results

show strong performance and efficient area utilization,

especially for parallel tasks. This study is highly relevant to the

current thesis, as it demonstrates how RISC-V’s modular design

enables scalable hardware accelerators, supporting the

integration of k-NN-specific instructions and datapath elements

into a RISC-V single-cycle processor for efficient, low-latency

machine learning inference at the edge.

In [4], H. Faeq and S. Sarkar (2024) present the design and

FPGA implementation of a five-stage pipelined RISC-V

processor, targeting improved execution speed and resource

efficiency for embedded applications. Their design incorporates

the classic pipeline stages—Instruction Fetch, Decode, Execute,

Memory Access, and Write Back—along with hazard detection

and forwarding logic to maintain smooth instruction flow.

Implemented on a Basys-3 FPGA board, the processor achieved

a clock frequency nearly 2.8 times higher than a comparable

single-cycle design, highlighting the performance gains of

pipelining. Synthesis results show efficient FPGA resource

usage with a good balance between speed, area, and power

consumption. This study is relevant to the current thesis by

illustrating how RISC-V architectural enhancements can boost

throughput in FPGA processors. Although the thesis uses a

single-cycle design for simplicity and predictable timing in k-

NN acceleration, this work lays the groundwork for future

pipelined designs to handle more complex machine learning

models and stricter real-time requirements.

In [5], Y. He (2021) presents the design and FPGA

implementation of a convolutional neural network (CNN)

hardware accelerator based on a RISC-V architecture, aimed at

efficient deep learning inference in embedded systems. Using

high-level synthesis (HLS), the design integrates hardware

modules specialized for CNN tasks such as convolution,

pooling, and activation functions, while leveraging RISC-V’s

open framework for customizable extensions and efficient

control logic. The implementation demonstrates significant

performance gains and reduced latency compared to software

execution. This work is relevant to the current thesis, as it

highlights the feasibility of adapting RISC-V for machine

learning accelerators. Although the focus is on CNN rather than

k-NN, the core idea of hardware customization for task-specific

acceleration aligns with the thesis goal. The use of FPGA

prototyping and focus on resource-efficient design further

support the methodology adopted in this project.

In [6], S. P. Manchala et al. (2024) propose a RISC-V-based

hardware accelerator designed to implement the k-Nearest

Neighbor (k-NN) algorithm, focusing on performance, area

efficiency, and low power consumption. The architecture

introduces custom instruction extensions to efficiently handle

key k-NN operations such as distance calculation, sorting, and

label voting. By leveraging the flexibility of the open-source

RISC-V ISA, the design reduces clock cycles and hardware

resource usage. Implemented on an FPGA platform, the

accelerator achieves significant improvements in latency and

power efficiency compared to general-purpose processors.

Optimized use of look-up tables (LUTs) and flip-flops further

enhances its suitability for edge AI applications. This work is

highly relevant to the current thesis, as it validates the approach

of customizing a RISC-V processor for k-NN acceleration,

providing a close reference for integrating custom datapaths and

instructions to enable real-time, efficient machine learning

inference in embedded systems.

In [7], B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini

(2022) present a comprehensive survey of hardware

accelerators, providing a taxonomy based on design aspects,

host coupling, architectural features, and software

considerations. The paper reviews around 100 accelerators

developed over the past decade, analyzing trends such as

heterogeneity, reconfigurability, and specialization for AI

applications. It highlights key design challenges, including

power efficiency, scalability, programmability, and integration

complexity, and emphasizes the growing role of open-source

frameworks like RISC-V in accelerating innovation. This survey

is highly relevant to the current thesis, as it contextualizes the

importance of application-specific customization in hardware

accelerators. It supports the project’s focus on designing a k-

NN-specific RISC-V processor and provides a broader

perspective on the evolution of efficient, AI-driven, real-time

embedded systems.

In [8] E. Cui, T. Li, and Q. Wei (2023) present an in-depth

survey of the various instruction set architecture (ISA)

extensions developed for the RISC-V platform, categorizing

them across key domains such as security, artificial intelligence

(AI), floating-point computation, vector processing, and

domain-specific applications. The authors systematically

analyze the motivations, design methodologies, and

implementation trade-offs involved in extending the base RISC-

V ISA, highlighting how these extensions contribute to

performance improvements, reduced instruction overhead, and

enhanced adaptability in hardware accelerators. The paper also

discusses standard and custom extensions, providing insights

into how open-source initiatives have facilitated the proliferation

of modular and application-tailored processors. This work is

directly relevant to the current thesis, as it supports the

integration of custom instructions—such as `SUBMUL` and

`FSQRT`—within the RISC-V processor designed for

accelerating k-NN computations. By grounding the architectural

decisions in broader ISA extension practices, this survey

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

reinforces the technical validity and extensibility of the proposed

hardware design, while also highlighting the flexibility of RISC-

V in enabling efficient domain-specific acceleration.

In [9], T. Bhattacharyya, P. Ghosal, Sonam, and S. Deb (2024)

propose "Vigil," a hybrid SoC architecture based on RISC-V for

a two-stage fall detection system combining convolutional

neural networks (CNNs) and k-Nearest Neighbor (k-NN)

algorithms. Targeted at FPGA platforms for real-time inference,

the design emphasizes hardware modularity, low latency, and

efficient resource use. The CNN module extracts features from

input data, while the k-NN algorithm performs classification

using custom logic integrated within the RISC-V SoC. The

authors report improved accuracy and responsiveness, making

the solution suitable for embedded health-monitoring

applications. This work is highly relevant to the current thesis,

as it demonstrates practical k-NN integration in a RISC-V

processor for real-time, edge-based AI inference, and provides

architectural insights for extending the project toward multi-

model, reconfigurable embedded accelerators.

In [10], RISC-V International’s official platform serves as the

central repository and community hub for the open-source

RISC-V instruction set architecture, providing technical

specifications, reference implementations, and collaborative

resources. It details the modular structure of the RISC-V ISA,

including base integer sets and a wide range of standard and

custom extensions, enabling flexible, domain-specific processor

designs. This source is foundational to the current thesis, as it

provides the authoritative specifications for designing and

validating the customized RISC-V processor aimed at k-NN

acceleration. The open and extensible nature of RISC-V

supports the thesis’s goal of implementing custom instructions

and low-power hardware features, offering both theoretical

guidance and practical implementation support.

In [11], RISC-V International’s official technical documentation

provides the foundational specifications for the RISC-V

Instruction Set Architecture (ISA), including the base integer set

(RV32I/RV64I), standard extensions (such as M, F, D, A, C, and

V), and guidelines for custom instruction encoding and privilege

levels. This comprehensive resource serves as a reference point

for compliant hardware implementations, ensuring

interoperability, modularity, and openness across processor

designs. The documentation also details encoding rules, pipeline

behavior expectations, exception handling, and ISA versioning,

making it essential for developers seeking to create reliable and

extensible hardware systems. In the context of this thesis, which

involves designing a customized single-cycle RISC-V processor

for accelerating the k-Nearest Neighbor (k-NN) algorithm, the

technical specification was indispensable in correctly

formulating and encoding custom instructions like `SUBMUL`,

`FSQRT`, and other k-NN-specific operations. It ensured

architectural compliance and guided the integration of custom

control signals and datapaths into the processor’s ALU and

instruction decode modules.

In [12], L. Wang, Y. Zhao, and H. Li (2023) present a RISC-V-

based hardware accelerator designed for efficient Euclidean

distance computation—a key operation in machine learning

algorithms like k-Nearest Neighbor (k-NN). The architecture

integrates custom datapath units and instruction extensions into

the RISC-V core to optimize squaring, summation, and square

root operations. Implemented on an FPGA, it achieves

significant reductions in computation latency and power

consumption compared to general-purpose processors. The

study demonstrates that hardware-level optimization of

mathematical primitives offers major performance benefits for

real-time inference. This work is directly relevant to the current

thesis, as it validates the approach of extending RISC-V with

specialized arithmetic logic for k-NN acceleration, supporting

key design decisions such as the inclusion of custom instructions

like SUBMUL and FSQRT to improve Euclidean distance

calculation efficiency.

III. METHODOLOGY

This project aims to develop a RISC-V based hardware

accelerator optimized for k-nearest neighbors (k-NN)

computations, starting with defining objectives and conducting

a thorough literature review to identify gaps in current

implementations. Key challenges, such as computational

complexity and energy efficiency, were addressed by

formulating a problem statement and research objectives. The

design phase involved creating a high-level and detailed

microarchitecture tailored for k-NN, followed by HDL

description and simulation to verify functionality.

A. Instruction Fetch Unit (IFU)

The processor operates on a single-cycle execution model,

where each instruction is fetched, decoded, executed, and stored

within one clock cycle to maximize efficiency. The Instruction

Fetch Unit (IFU) retrieves instructions from memory using the

Program Counter (PC), increments the PC for sequential

execution, and supplies the instruction to the Control Unit. The

Control Unit decodes the instruction and generates the necessary

control signals to guide the datapath. The datapath connects the

Register Files, Arithmetic Logic Unit (ALU), and Block RAM

(BRAM). Register Files store operands and intermediate results,

while the ALU performs arithmetic operations like those needed

for distance calculations in the k-NN algorithm. BRAM is used

to store datasets, intermediate distances, and output results.

Together, these components enable efficient, step-by-step

execution of the k-NN algorithm in a streamlined and

predictable manner.

Fig 1 Instruction Fetch Unit

B. Control Unit

Fig 2 illustrates the Control Unit, which plays a pivotal role in

ensuring the seamless execution of instructions across the

processor architecture. Once an instruction is fetched by the

IFU, the Control Unit interprets its opcode and generates the

necessary control signals required to activate specific

components in the datapath. These control signals are essential

in directing the flow of data and orchestrating operations across

various hardware modules. The Control Unit is designed to

decode both standard RISC-V instructions and the customized

instructions introduced to optimize k-NN operations, such as

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

SUBMUL, SQRT, and sorting-related commands. Upon

decoding, the unit determines the nature of the instruction—

whether it involves arithmetic computation, memory access, or

conditional branching—and configures the ALU, Register File,

and memory blocks accordingly. It ensures that operands are

selected correctly, memory is accessed efficiently, and results

are routed to the correct destinations. Moreover, in a single-

cycle architecture, the precision and responsiveness of the

Control Unit are critical, as it must issue correct signals within

one clock cycle. The timing and logical correctness of these

signals guarantee proper execution of complex operations like

Euclidean distance computation and classification voting in the

k-NN algorithm. By tightly coordinating all hardware modules,

the Control Unit maintains synchronization, reduces execution

delays, and contributes significantly to the overall efficiency

and reliability of the processor.

Fig 2 Control Unit

C. Datapath

The Datapath module in the above fig 3 is the network that

connects all functional units (Register Files, ALU, Memory) and

carries out the data processing. It includes buses and

multiplexers to route data between different components,

facilitating the movement of data needed for computations. The

Datapath ensures that data flows smoothly between the units,

enabling efficient execution of instructions. The Datapath

module serves as the core computational engine within the

processor architecture, integrating essential components such as

the Arithmetic Logic Unit (ALU), Register Files, and two Block

RAMs (BRAMs) for data and label storage. This module

orchestrates the flow of data and instructions through the

processor pipeline, enabling efficient computation and data

manipulation.

Fig 3 Datapath

D. Register Files

The Register Files, embedded within the datapath, act as high-

speed temporary storage used to hold operands, intermediate

results, and final outputs of computations. For the k-NN

algorithm, the register files are especially critical as they store

the dataset features, squared differences, and classification

labels throughout the execution process. The register file

consists of 32 registers, each 32 bits wide, and supports

simultaneous dual-read operations alongside a single write

operation per clock cycle. This dual-read capability ensures that

two operands can be fetched concurrently, which is essential for

arithmetic instructions like addition, subtraction, and the custom

SUBMUL operation used in squared distance calculation.

Writing to the register file is performed within the same clock

cycle after an ALU computation or data memory fetch, making

the system highly efficient for iterative computations such as

those required in k-NN. The seamless interaction between the

ALU and the Register Files ensures that data is promptly

available for the next stage in execution, whether it be

accumulation, square root calculation, or sorting. Overall, the

tightly integrated datapath and register file design significantly

contribute to the architecture's throughput and effectiveness in

executing machine learning tasks like k-NN.

E. Arithmetic Logic Unit (ALU)

Fig 4 illustrates the Arithmetic Logic Unit (ALU), a critical

component responsible for executing core arithmetic and logic

operations necessary for implementing the k-NN algorithm.

The ALU in this architecture supports both integer and floating-

point operations and has been enhanced with customized

control signals to perform additional tasks such as squared

subtraction and majority classification. The ALU performs

standard integer operations like addition and multiplication,

identified by control signals 0110 and 0111, respectively. These

are used during index management and loop control in

instruction execution. In the context of k-NN, floating-point

arithmetic is central, and the ALU supports essential floating-

point operations such as addition (control: 0001), square root

(control: 0010), and a custom subtraction followed by squaring

operation (SUBMUL) with control signal 0000, used to

compute squared differences between feature values.

Additionally, a unique feature of this ALU is its capability to

handle sorting and majority voting operations using control

signal 0011. This specialization enables efficient execution of

the final classification step of the k-NN algorithm, where

distances are sorted and the most frequent label among the

nearest neighbors is determined.

By consolidating multiple arithmetic and classification

functions into a single unit and enabling support for both

standard and custom operations, the ALU significantly

contributes to reducing the instruction count and improving

overall execution efficiency for machine learning workloads on

this custom RISC-V architecture.

Fig 4 Arithmetic Logic Unit

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

F. Block Memeory

Block Memory is used to store the dataset, intermediate

distances, and final results in k-NN computations. It includes

memory for dataset points, the query point, and computed

distances, facilitating efficient read and write operations crucial

for distance calculations and sorting.

Functional Operation

Data Processing Flow:

–Instruction Fetch: The Datapath fetches instructions via the

Instruction Fetch Unit (IFU), directing them for execution.

–Data Operations: ALU operations perform arithmetic

calculations and logical com- parisons on data from Register

Files or BRAMs.

–Data Storage: Dedicated BRAMs store and retrieve data points

and labels, supporting operations like sorting, classification, or

pattern recognition.

G. Custom Instructions Added

1.SUBMUL

Instruction Details:

• Format: Custom R-type

• Description: Performs subtraction between two floating-point

values from source reg- isters rs1 and rs2. The resulting value

is then multiplied by itself, and the final result is stored in

destination register rd.

• Operation: rd = (rs1 - rs2) * (rs1 - rs2)

2.MKTFM (Move K to Sort Module)

Instruction Details:

• Format: I-type

• Description: Moves a specific value (k) from the register file

to the Sort module for sorting operations.

• Operation: rd = rs1 + imm, where imm = 0

3.MLTFM (Move Label to Sort Module)

Instruction Details:

• Format: I-type

• Description: Moves label information to the Sort module,

useful for categorization during sorting.

• Operation: rd = rs1 + imm, where imm = 0

4.MSTFM (Move Square Root to Sort Module)

Instruction Details:

• Format: I-type

• Description: Moves a computed square root value to the Sort

module, essential for distance calculations in sorting.

• Operation: rd = rs1 + imm, where imm = 0

IV. RESULTS & DISCUSSION

The final implementation results confirm that the proposed

KNN processor achieves both power efficiency and timing

stability, making it a strong candidate for energy-constrained

machine learning applications. The total on-chip power

consumption is 0.1 W, with dynamic power accounting for only

0.019 W, primarily used by the datapath during the Euclidean

distance calculation. Static power makes up the majority of the

total, as expected in FPGA-based implementations. The power

is mostly spent on logic and signal switching, each contributing

about 38%, while DSP operations contribute 15%, and clocks

and I/Os consume very little power. Thermally, the processor

operates safely at a junction temperature of 25.2°C, well below

critical limits, ensuring the design’s suitability for embedded

environments. The overall power estimate was produced with

medium confidence, suggesting that the simulated activity data

used reflects realistic usage. From a timing perspective, the

design meets all specified timing constraints, with no failing

endpoints in setup, hold, or pulse width analysis. The worst

negative slack (WNS) of 92.206 ns is positive, indicating that

the design can comfortably meet the required clock period

(even for low-frequency operation like 10 MHz). Similarly, the

hold and pulse width slack values (0.274 ns and 49.6 ns,

respectively) confirm that the internal timing of the design is

well-balanced and robust. Together, these results demonstrate

that the proposed KNN processor is a low-power, thermally

safe, and timing-correct solution, making it highly suitable for

machine learning acceleration on edge devices or portable

embedded platforms where power and thermal budgets are

critical.

Fig 5 Simulation Output

Fig 6 Power Analysis of Implemented Customized Knn

Algorithm.

Fig 7 Timing Summary of Implemented Customized Knn Algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

REFERENCES

[1] J. Park, K. Han, E. Choi, J.-J. Lee, K. Lee, and W. Woo, “Designing Low-
Power RISC-V Multicore Processors with a Shared Lightweight Floating-

Point Unit for IoT Endnodes,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 71, no. 9, pp. 3593–3603, Sep. 2024.
[2] M. H. Yacoub, S. M. Ismail, L. A. Said, A. H. Madian, and A. G. Radwan,

“Reconfigurable hardware implementation of K-nearest neighbor

algorithm on FPGA,” AEU - International Journal of Electronics and
Communications, vol. 138, 2022.

[3] A. Kamaleldin, S. Hesham, and D. Göhringer, “Towards a Modular

RISC-V Based Many-Core Architecture for FPGA Accelerators,” IEEE
Access, vol. 8, pp. 148812–148826, 2020.

[4] H. Faeq and S. Sarkar, “Design and FPGA Implementation of Five Stage

Pipelined RISC-V Processor,” in Proc. IEEE 9th Int. Conf. for
Convergence in Technology (I2CT), Pune, India, 2024.

[5] Y. He, “Design and implementation of convolutional neural network

accelerator based on RISC-V,” J. Phys.: Conf. Ser., vol. 1871, no. 1, p.
012073, Apr. 2021.

[6] S. P. Manchala, S. Ranganath, V. Anandi, S. T. P., S. Kamath, and S.

Bhattacharya, “RISC-V Architecture Based Hardware Accelerator for
kNN,” in Proc. 5th Int. Conf. on Circuits, Control, Communication and

Computing (I4C), 2024.

[7] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, “A Survey on
Hardware Accelerators: Taxonomy, Trends, Challenges, and

Perspectives,” Journal of Systems Architecture, vol. 132, pp. 102812, Jun.

2022.
[8] E. Cui, T. Li, and Q. Wei, “RISC-V Instruction Set Architecture

Extensions: A Survey,” IEEE Access, vol. 11, pp. 36012–36033, 2023.

[9] T. Bhattacharyya, P. Ghosal, Sonam, and S. Deb, “Vigil: A RISC-V SoC
Architecture for 2-fold Hybrid CNN-kNN Based Fall Detector

Implementation on FPGA,” in Proc. 2024 37th Int. Conf. on VLSI Design

and 23rd Int. Conf. on Embedded Systems (VLSID), 2024.
[10] RISC-V International, “Open Source Architecture,” [Online]. Available:

https://community.riscv.org/ .

[11] RISC-V International, “RISC-V Technical Documentation,” \[Online].
Available:[https://riscv.org/technical/specifications/]

(https://riscv.org/technical/specifications/). \[Accessed: Mar. 7, 2025].

[12] L. Wang, Y. Zhao, and H. Li, “Design and Implementation of RISC-V
Based Accelerator for Euclidean Distance Calculation,” in Proc. Int. Conf.

on Embedded Systems and Applications (ESA), 2023.

[13] B. W. Mezger, D. A. Santos, L. Dilillo, C. A. Zeferino, and D. R. Melo,
“A Survey of the RISC-V Architecture Software Support,” IEEE Access,

vol. 10, pp. 51394–51411, May 2022.

[14] P. D. Schiavone, M. Gautschi, A. Traber, I. Loi, A. Pullini, D. Rossi, E.
Flamand, and L. Benini, “Slow and steady wins the race? A comparison

of ultra-low-power RISC-V cores for Internet-of-Things applications,” in

Proc. 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Thessaloniki, Greece, 2017,

pp. 1–8, doi: 10.1109/PATMOS.2017.8106976.

[15] C. Tain, S. Patil, and H. Al-Asaad, “Survey of Verification of RISC-V
Processors,” Journal of Electronic Testing: Theory and Applications, vol.

41, pp. 111–138, May 2025.
[16] [14] Z. Zhang, W. Li, and L. Zhang, “FPGA-Based Acceleration of k-

NN for Real-Time Applications,” IEEE Access, vol. 11, pp. 43012–

43025, 2023.
[17] M. Abate, C. Giordano, and D. Rossi, “Open Hardware Accelerators for

Edge Machine Learning: A Survey,” IEEE Transactions on Emerging

Topics in Computing, early access, 2024.

doi:10.1109/TETC.2024.000123.

[18] D. Rossi, F. Conti, and L. Benini, “An Ultra-Low Power RISC-V Core

for Energy-Efficient AI Edge Applications,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 13, no. 2, pp. 342–354, Jun. 2023.

[19] A. Rahimi, M. Shoaib, and R. K. Gupta, “Enabling Scalable and Energy-

Efficient Embedded Machine Learning Using RISC-V Accelerators,”
ACM Trans. Embedded Comput. Syst., vol. 22, no. 3, pp. 1–25, Mar.

2023.

[20] Y. Yang, Q. Cheng, and D. Wu, “Efficient Sorting and Label Prediction
in Hardware Accelerators for k-NN on FPGA,” Microprocessors and

Microsystems, vol. 93, 104736, Jan. 2023.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS090042
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 09, September - 2025

www.ijert.org
www.ijert.org

