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Abstract— The growing demand for embedded machine learning 

applications necessitates energy-efficient and high-performance 

computing solutions. This paper proposes a customized RISC-V 

architecture optimized for the k-Nearest Neighbor (k-NN) 

algorithm, a foundational method in pattern recognition and 

classification. By extending the open-source RISC-V ISA with 

custom instructions and a streamlined microarchitecture, the 

design targets the key computational elements of k-NN, including 

Euclidean distance calculation and class label sorting, with a focus 

solely on simulation-based verification of the architecture's 

efficiency and functionality. The entire design was modeled and 

verified using Verilog HDL simulations. Through these 

simulations, we evaluated the performance and control flow of the 

proposed design. The simulation results highlight notable 

improvements in execution speed and theoretical energy 

efficiency, validating the effectiveness of the customized datapath, 

register file, and arithmetic units. This work demonstrates the 

architecture's potential for deployment in energy-constrained 

embedded environments such as IoT and edge computing 

platforms. 

Keywords— RISC-V, k-NN, Machine Learning, Custom ISA, 

Embedded Systems. 

I. INTRODUCTION

The rapid proliferation of smart devices and edge computing 

platforms has fueled an increasing demand for machine learning 

applications capable of delivering real-time performance within 

energy-constrained environments. Algorithms such as image 

recognition, pattern classification, and anomaly detection are 

now integral to numerous sectors, including healthcare 

monitoring, industrial automation, and smart surveillance. These 

applications often involve processing large datasets and 

performing complex mathematical computations, which impose 

significant burdens on conventional general-purpose processors. 

Traditionally, such computational tasks are offloaded to 

dedicated hardware accelerators that provide significant 

performance gains. However, many existing accelerators are 

tightly coupled with proprietary instruction set architectures 

(ISAs) and lack the flexibility required to adapt to evolving 

algorithmic needs. This dependence on vendor-specific 

solutions also leads to challenges such as limited extensibility, 

interoperability issues across platforms, and increased 

development costs due to vendor lock-in.RISC-V, an open-

source and modular ISA, has emerged as a promising 

alternative, offering developers the freedom to customize both 

the instruction set and the microarchitecture to suit specific 

application requirements. Its extensibility and open nature 

enable the creation of domain-specific accelerators that can 

efficiently execute complex algorithms like the k-Nearest 

Neighbor (k-NN) while addressing power, performance, and 

area trade-offs. This paper proposes a dedicated hardware 

accelerator for the k-NN algorithm built on a customized RISC-

V architecture. The k-NN algorithm, widely used in 

classification and clustering tasks, involves intensive distance 

computations and sorting operations that are computationally 

expensive on conventional processors. By incorporating 

application-specific custom instructions and optimizing the 

datapath for the core operations of k-NN, the proposed 

accelerator aims to enhance computational throughput and 

energy efficiency. The architecture is modeled and verified 

entirely through simulation, laying a strong foundation for future 

hardware realizations. This work proposes a dedicated k-NN 

accelerator based on a customized RISC-V architecture, 

designed for energy-efficient real-time processing in edge 

device. 

II. LITRATURE SURVEY

In [1], J. Park et al. (2024) present a low-power multicore RISC-

V processor architecture designed for energy-constrained IoT 

end-nodes. Their main contribution is the implementation of a 

shared lightweight floating-point unit (FPU) across multiple 

cores, significantly reducing hardware redundancy and area 

overhead while maintaining sufficient performance for signal 

processing and embedded AI tasks. The authors utilize RISC-

V’s modularity to implement fine-grained power management 

techniques, such as clock gating and selective resource 

activation, reducing both static and dynamic power 

consumption. FPGA-based experiments demonstrate that their 

design achieves a strong balance between performance and 

energy efficiency, outperforming traditional multicore designs 

with separate FPUs. This research informs the current thesis by 

providing key strategies for shared-resource architecture and 

power optimization, aiding in the design of an energy-efficient 

RISC-V hardware accelerator for the k-Nearest Neighbor (k-

NN) algorithm while meeting real-time inference requirements. 

In [2], M. H. Yacoub et al. (2022) propose a reconfigurable 

hardware architecture for implementing the k-Nearest Neighbor 

(k-NN) algorithm on FPGA, focusing on improving execution 

speed and reducing power consumption in classification tasks. 

The design leverages FPGA parallelism to accelerate distance 

calculations and optimize memory access, which are the most 

compute-intensive parts of k-NN. Through pipelined operations 
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and tailored control logic, the architecture achieves significant 

improvements in processing time and energy efficiency 

compared to traditional software implementations. 

Experimental results show substantial throughput gains, making 

it well-suited for real-time and embedded machine learning 

applications. This work is highly relevant to the current thesis, 

as it demonstrates the effectiveness of offloading k-NN to 

specialized hardware and provides a strong foundation for 

integrating similar performance-optimized modules into a 

RISC-V-based accelerator with custom instructions and control 

flow for low-latency, energy-efficient k-NN execution. 

In [3], A. Kamaleldin, S. Hesham, and D. Göhringer (2020) 

propose a modular many-core architecture based on the RISC-V 

instruction set, aimed at FPGA-based hardware accelerators for 

high-performance parallel computing. The design emphasizes 

modularity and scalability, allowing developers to customize 

processing cores and interconnects for specific application 

needs. Each core is configurable, supporting custom extensions 

and lightweight control units, which enhances adaptability to 

various workloads. By leveraging RISC-V’s open and 

extensible nature, the architecture enables flexible core 

configurations and efficient memory hierarchies, optimizing 

resource use in FPGA implementations. Experimental results 

show strong performance and efficient area utilization, 

especially for parallel tasks. This study is highly relevant to the 

current thesis, as it demonstrates how RISC-V’s modular design 

enables scalable hardware accelerators, supporting the 

integration of k-NN-specific instructions and datapath elements 

into a RISC-V single-cycle processor for efficient, low-latency 

machine learning inference at the edge. 

In [4], H. Faeq and S. Sarkar (2024) present the design and 

FPGA implementation of a five-stage pipelined RISC-V 

processor, targeting improved execution speed and resource 

efficiency for embedded applications. Their design incorporates 

the classic pipeline stages—Instruction Fetch, Decode, Execute, 

Memory Access, and Write Back—along with hazard detection 

and forwarding logic to maintain smooth instruction flow. 

Implemented on a Basys-3 FPGA board, the processor achieved 

a clock frequency nearly 2.8 times higher than a comparable 

single-cycle design, highlighting the performance gains of 

pipelining. Synthesis results show efficient FPGA resource 

usage with a good balance between speed, area, and power 

consumption. This study is relevant to the current thesis by 

illustrating how RISC-V architectural enhancements can boost 

throughput in FPGA processors. Although the thesis uses a 

single-cycle design for simplicity and predictable timing in k-

NN acceleration, this work lays the groundwork for future 

pipelined designs to handle more complex machine learning 

models and stricter real-time requirements. 

In [5], Y. He (2021) presents the design and FPGA 

implementation of a convolutional neural network (CNN) 

hardware accelerator based on a RISC-V architecture, aimed at 

efficient deep learning inference in embedded systems. Using 

high-level synthesis (HLS), the design integrates hardware 

modules specialized for CNN tasks such as convolution, 

pooling, and activation functions, while leveraging RISC-V’s 

open framework for customizable extensions and efficient 

control logic. The implementation demonstrates significant 

performance gains and reduced latency compared to software 

execution. This work is relevant to the current thesis, as it 

highlights the feasibility of adapting RISC-V for machine 

learning accelerators. Although the focus is on CNN rather than 

k-NN, the core idea of hardware customization for task-specific 

acceleration aligns with the thesis goal. The use of FPGA 

prototyping and focus on resource-efficient design further 

support the methodology adopted in this project. 

In [6], S. P. Manchala et al. (2024) propose a RISC-V-based 

hardware accelerator designed to implement the k-Nearest 

Neighbor (k-NN) algorithm, focusing on performance, area 

efficiency, and low power consumption. The architecture 

introduces custom instruction extensions to efficiently handle 

key k-NN operations such as distance calculation, sorting, and 

label voting. By leveraging the flexibility of the open-source 

RISC-V ISA, the design reduces clock cycles and hardware 

resource usage. Implemented on an FPGA platform, the 

accelerator achieves significant improvements in latency and 

power efficiency compared to general-purpose processors. 

Optimized use of look-up tables (LUTs) and flip-flops further 

enhances its suitability for edge AI applications. This work is 

highly relevant to the current thesis, as it validates the approach 

of customizing a RISC-V processor for k-NN acceleration, 

providing a close reference for integrating custom datapaths and 

instructions to enable real-time, efficient machine learning 

inference in embedded systems. 

In [7], B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini 

(2022) present a comprehensive survey of hardware 

accelerators, providing a taxonomy based on design aspects, 

host coupling, architectural features, and software 

considerations. The paper reviews around 100 accelerators 

developed over the past decade, analyzing trends such as 

heterogeneity, reconfigurability, and specialization for AI 

applications. It highlights key design challenges, including 

power efficiency, scalability, programmability, and integration 

complexity, and emphasizes the growing role of open-source 

frameworks like RISC-V in accelerating innovation. This survey 

is highly relevant to the current thesis, as it contextualizes the 

importance of application-specific customization in hardware 

accelerators. It supports the project’s focus on designing a k-

NN-specific RISC-V processor and provides a broader 

perspective on the evolution of efficient, AI-driven, real-time 

embedded systems. 

In [8] E. Cui, T. Li, and Q. Wei (2023) present an in-depth 

survey of the various instruction set architecture (ISA) 

extensions developed for the RISC-V platform, categorizing 

them across key domains such as security, artificial intelligence 

(AI), floating-point computation, vector processing, and 

domain-specific applications. The authors systematically 

analyze the motivations, design methodologies, and 

implementation trade-offs involved in extending the base RISC-

V ISA, highlighting how these extensions contribute to 

performance improvements, reduced instruction overhead, and 

enhanced adaptability in hardware accelerators. The paper also 

discusses standard and custom extensions, providing insights 

into how open-source initiatives have facilitated the proliferation 

of modular and application-tailored processors. This work is 

directly relevant to the current thesis, as it supports the 

integration of custom instructions—such as `SUBMUL` and 

`FSQRT`—within the RISC-V processor designed for 

accelerating k-NN computations. By grounding the architectural 

decisions in broader ISA extension practices, this survey 
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reinforces the technical validity and extensibility of the proposed 

hardware design, while also highlighting the flexibility of RISC-

V in enabling efficient domain-specific acceleration. 

In [9], T. Bhattacharyya, P. Ghosal, Sonam, and S. Deb (2024) 

propose "Vigil," a hybrid SoC architecture based on RISC-V for 

a two-stage fall detection system combining convolutional 

neural networks (CNNs) and k-Nearest Neighbor (k-NN) 

algorithms. Targeted at FPGA platforms for real-time inference, 

the design emphasizes hardware modularity, low latency, and 

efficient resource use. The CNN module extracts features from 

input data, while the k-NN algorithm performs classification 

using custom logic integrated within the RISC-V SoC. The 

authors report improved accuracy and responsiveness, making 

the solution suitable for embedded health-monitoring 

applications. This work is highly relevant to the current thesis, 

as it demonstrates practical k-NN integration in a RISC-V 

processor for real-time, edge-based AI inference, and provides 

architectural insights for extending the project toward multi-

model, reconfigurable embedded accelerators. 

In [10], RISC-V International’s official platform serves as the 

central repository and community hub for the open-source 

RISC-V instruction set architecture, providing technical 

specifications, reference implementations, and collaborative 

resources. It details the modular structure of the RISC-V ISA, 

including base integer sets and a wide range of standard and 

custom extensions, enabling flexible, domain-specific processor 

designs. This source is foundational to the current thesis, as it 

provides the authoritative specifications for designing and 

validating the customized RISC-V processor aimed at k-NN 

acceleration. The open and extensible nature of RISC-V 

supports the thesis’s goal of implementing custom instructions 

and low-power hardware features, offering both theoretical 

guidance and practical implementation support. 

In [11], RISC-V International’s official technical documentation 

provides the foundational specifications for the RISC-V 

Instruction Set Architecture (ISA), including the base integer set 

(RV32I/RV64I), standard extensions (such as M, F, D, A, C, and 

V), and guidelines for custom instruction encoding and privilege 

levels. This comprehensive resource serves as a reference point 

for compliant hardware implementations, ensuring 

interoperability, modularity, and openness across processor 

designs. The documentation also details encoding rules, pipeline 

behavior expectations, exception handling, and ISA versioning, 

making it essential for developers seeking to create reliable and 

extensible hardware systems. In the context of this thesis, which 

involves designing a customized single-cycle RISC-V processor 

for accelerating the k-Nearest Neighbor (k-NN) algorithm, the 

technical specification was indispensable in correctly 

formulating and encoding custom instructions like `SUBMUL`, 

`FSQRT`, and other k-NN-specific operations. It ensured 

architectural compliance and guided the integration of custom 

control signals and datapaths into the processor’s ALU and 

instruction decode modules. 

In [12], L. Wang, Y. Zhao, and H. Li (2023) present a RISC-V-

based hardware accelerator designed for efficient Euclidean 

distance computation—a key operation in machine learning 

algorithms like k-Nearest Neighbor (k-NN). The architecture 

integrates custom datapath units and instruction extensions into 

the RISC-V core to optimize squaring, summation, and square 

root operations. Implemented on an FPGA, it achieves 

significant reductions in computation latency and power 

consumption compared to general-purpose processors. The 

study demonstrates that hardware-level optimization of 

mathematical primitives offers major performance benefits for 

real-time inference. This work is directly relevant to the current 

thesis, as it validates the approach of extending RISC-V with 

specialized arithmetic logic for k-NN acceleration, supporting 

key design decisions such as the inclusion of custom instructions 

like SUBMUL and FSQRT to improve Euclidean distance 

calculation efficiency. 

III. METHODOLOGY

This project aims to develop a RISC-V based hardware 

accelerator optimized for k-nearest neighbors (k-NN) 

computations, starting with defining objectives and conducting 

a thorough literature review to identify gaps in current 

implementations. Key challenges, such as computational 

complexity and energy efficiency, were addressed by 

formulating a problem statement and research objectives. The 

design phase involved creating a high-level and detailed 

microarchitecture tailored for k-NN, followed by HDL 

description and simulation to verify functionality. 

A. Instruction Fetch Unit (IFU)

The processor operates on a single-cycle execution model, 

where each instruction is fetched, decoded, executed, and stored 

within one clock cycle to maximize efficiency. The Instruction 

Fetch Unit (IFU) retrieves instructions from memory using the 

Program Counter (PC), increments the PC for sequential 

execution, and supplies the instruction to the Control Unit. The 

Control Unit decodes the instruction and generates the necessary 

control signals to guide the datapath. The datapath connects the 

Register Files, Arithmetic Logic Unit (ALU), and Block RAM 

(BRAM). Register Files store operands and intermediate results, 

while the ALU performs arithmetic operations like those needed 

for distance calculations in the k-NN algorithm. BRAM is used 

to store datasets, intermediate distances, and output results. 

Together, these components enable efficient, step-by-step 

execution of the k-NN algorithm in a streamlined and 

predictable manner. 

Fig 1 Instruction Fetch Unit 

B. Control Unit

Fig 2 illustrates the Control Unit, which plays a pivotal role in 

ensuring the seamless execution of instructions across the 

processor architecture. Once an instruction is fetched by the 

IFU, the Control Unit interprets its opcode and generates the 

necessary control signals required to activate specific 

components in the datapath. These control signals are essential 

in directing the flow of data and orchestrating operations across 

various hardware modules. The Control Unit is designed to 

decode both standard RISC-V instructions and the customized 

instructions introduced to optimize k-NN operations, such as 
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SUBMUL, SQRT, and sorting-related commands. Upon 

decoding, the unit determines the nature of the instruction—

whether it involves arithmetic computation, memory access, or 

conditional branching—and configures the ALU, Register File, 

and memory blocks accordingly. It ensures that operands are 

selected correctly, memory is accessed efficiently, and results 

are routed to the correct destinations. Moreover, in a single-

cycle architecture, the precision and responsiveness of the 

Control Unit are critical, as it must issue correct signals within 

one clock cycle. The timing and logical correctness of these 

signals guarantee proper execution of complex operations like 

Euclidean distance computation and classification voting in the 

k-NN algorithm. By tightly coordinating all hardware modules,

the Control Unit maintains synchronization, reduces execution

delays, and contributes significantly to the overall efficiency

and reliability of the processor.

Fig 2 Control Unit 

C. Datapath

The Datapath module in the above fig 3 is the network that 

connects all functional units (Register Files, ALU, Memory) and 

carries out the data processing. It includes buses and 

multiplexers to route data between different components, 

facilitating the movement of data needed for computations. The 

Datapath ensures that data flows smoothly between the units, 

enabling efficient execution of instructions. The Datapath 

module serves as the core computational engine within the 

processor architecture, integrating essential components such as 

the Arithmetic Logic Unit (ALU), Register Files, and two Block 

RAMs (BRAMs) for data and label storage. This module 

orchestrates the flow of data and instructions through the 

processor pipeline, enabling efficient computation and data 

manipulation. 

Fig 3 Datapath 

D. Register Files

The Register Files, embedded within the datapath, act as high-

speed temporary storage used to hold operands, intermediate 

results, and final outputs of computations. For the k-NN 

algorithm, the register files are especially critical as they store 

the dataset features, squared differences, and classification 

labels throughout the execution process. The register file 

consists of 32 registers, each 32 bits wide, and supports 

simultaneous dual-read operations alongside a single write 

operation per clock cycle. This dual-read capability ensures that 

two operands can be fetched concurrently, which is essential for 

arithmetic instructions like addition, subtraction, and the custom 

SUBMUL operation used in squared distance calculation. 

Writing to the register file is performed within the same clock 

cycle after an ALU computation or data memory fetch, making 

the system highly efficient for iterative computations such as 

those required in k-NN. The seamless interaction between the 

ALU and the Register Files ensures that data is promptly 

available for the next stage in execution, whether it be 

accumulation, square root calculation, or sorting. Overall, the 

tightly integrated datapath and register file design significantly 

contribute to the architecture's throughput and effectiveness in 

executing machine learning tasks like k-NN. 

E. Arithmetic Logic Unit (ALU)

Fig 4 illustrates the Arithmetic Logic Unit (ALU), a critical 

component responsible for executing core arithmetic and logic 

operations necessary for implementing the k-NN algorithm. 

The ALU in this architecture supports both integer and floating-

point operations and has been enhanced with customized 

control signals to perform additional tasks such as squared 

subtraction and majority classification. The ALU performs 

standard integer operations like addition and multiplication, 

identified by control signals 0110 and 0111, respectively. These 

are used during index management and loop control in 

instruction execution. In the context of k-NN, floating-point 

arithmetic is central, and the ALU supports essential floating-

point operations such as addition (control: 0001), square root 

(control: 0010), and a custom subtraction followed by squaring 

operation (SUBMUL) with control signal 0000, used to 

compute squared differences between feature values. 

Additionally, a unique feature of this ALU is its capability to 

handle sorting and majority voting operations using control 

signal 0011. This specialization enables efficient execution of 

the final classification step of the k-NN algorithm, where 

distances are sorted and the most frequent label among the 

nearest neighbors is determined. 

By consolidating multiple arithmetic and classification 

functions into a single unit and enabling support for both 

standard and custom operations, the ALU significantly 

contributes to reducing the instruction count and improving 

overall execution efficiency for machine learning workloads on 

this custom RISC-V architecture. 

Fig 4 Arithmetic Logic Unit 
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F. Block Memeory 

Block Memory is used to store the dataset, intermediate 

distances, and final results in k-NN computations. It includes 

memory for dataset points, the query point, and computed 

distances, facilitating efficient read and write operations crucial 

for distance calculations and sorting. 

Functional Operation 

 

Data Processing Flow: 

–Instruction Fetch: The Datapath fetches instructions via the 

Instruction Fetch Unit (IFU), directing them for execution. 

–Data Operations: ALU operations perform arithmetic 

calculations and logical com- parisons on data from Register 

Files or BRAMs. 

–Data Storage: Dedicated BRAMs store and retrieve data points 

and labels, supporting operations like sorting, classification, or 

pattern recognition. 

 

G. Custom Instructions Added 

1.SUBMUL 

Instruction Details: 

• Format: Custom R-type 

• Description: Performs subtraction between two floating-point 

values from source reg- isters rs1 and rs2. The resulting value 

is then multiplied by itself, and the final result is stored in 

destination register rd. 

• Operation: rd = (rs1 - rs2) * (rs1 - rs2) 

 

2.MKTFM (Move K to Sort Module)  

Instruction Details: 

• Format: I-type 

• Description: Moves a specific value (k) from the register file 

to the Sort module for sorting operations. 

• Operation: rd = rs1 + imm, where imm = 0 

 

3.MLTFM (Move Label to Sort Module) 

Instruction Details: 

• Format: I-type 

• Description: Moves label information to the Sort module, 

useful for categorization during sorting. 

• Operation: rd = rs1 + imm, where imm = 0 

 

4.MSTFM (Move Square Root to Sort Module) 

Instruction Details: 

• Format: I-type 

• Description: Moves a computed square root value to the Sort 

module, essential for distance calculations in sorting. 

• Operation: rd = rs1 + imm, where imm = 0 
 

IV. RESULTS & DISCUSSION 

The final implementation results confirm that the proposed 

KNN processor achieves both power efficiency and timing 

stability, making it a strong candidate for energy-constrained 

machine learning applications. The total on-chip power 

consumption is 0.1 W, with dynamic power accounting for only 

0.019 W, primarily used by the datapath during the Euclidean 

distance calculation. Static power makes up the majority of the 

total, as expected in FPGA-based implementations. The power 

is mostly spent on logic and signal switching, each contributing 

about 38%, while DSP operations contribute 15%, and clocks 

and I/Os consume very little power. Thermally, the processor 

operates safely at a junction temperature of 25.2°C, well below 

critical limits, ensuring the design’s suitability for embedded 

environments. The overall power estimate was produced with 

medium confidence, suggesting that the simulated activity data 

used reflects realistic usage. From a timing perspective, the 

design meets all specified timing constraints, with no failing 

endpoints in setup, hold, or pulse width analysis. The worst 

negative slack (WNS) of 92.206 ns is positive, indicating that 

the design can comfortably meet the required clock period 

(even for low-frequency operation like 10 MHz). Similarly, the 

hold and pulse width slack values (0.274 ns and 49.6 ns, 

respectively) confirm that the internal timing of the design is 

well-balanced and robust. Together, these results demonstrate 

that the proposed KNN processor is a low-power, thermally 

safe, and timing-correct solution, making it highly suitable for 

machine learning acceleration on edge devices or portable 

embedded platforms where power and thermal budgets are 

critical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 Simulation Output 

 
Fig 6 Power Analysis of Implemented Customized Knn 

Algorithm. 

 

 
 

Fig 7 Timing Summary of Implemented Customized Knn Algorithm. 
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