
A Comprehensive Survey on Sequential Pattern Mining

Irfan Khan
1

Department of computer Application,

S.A.T.I. Vidisha, (M.P.), India

Anoop Jain
2

Department of computer Application,

S.A.T.I. Vidisha, (M.P.), India

Abstract

Mining sequential patterns has been a focused theme in

data mining research for over a decade. One of the

promising approaches of SPM is mainly deal with finding

the behaviour of a sequential pattern that can help in many

analyzing applications like predicting next event. There are

several efficient algorithms that cope with the

computationally expensive task of sequential pattern

mining. One of them is Generalized Sequential Pattern

(GSP) mining algorithm which is an Apriori-based

algorithm used for sequential pattern mining. The GSP

algorithm has several deficiencies whenever the database

size is large, too many scanning of database when seeking

frequent sequences and very large amount of candidate

sequences generated unnecessary. PrefixSpan which is

pattern growth method outperforms GSP and solves all

above problems. Its main idea is to examine only the prefix

subsequences with minimum support. This paper

investigates these algorithms by classifying study of SPM

algorithms.

Keywords: - Sequential pattern mining, Apriori based Algorithms,

Pattern growth based algorithms.

1. Introduction

SEQUENTIAL pattern mining [2], which discovers

frequent subsequences as patterns in a sequence database,

is an important data mining problem with broad

applications, including the analysis of customer purchase

patterns or Web access patterns, the analysis of sequencing

or time related processes such as scientific experiments,

natural disasters, and disease treatments, the analysis of

DNA sequences, etc.

 The sequential pattern mining problem was first

introduced by Agrawal and Srikant in [2] Given a set of

sequences, where each sequence consists of a list of

elements and each element consists of a set of items, and

given a user-specified min_support threshold, sequential

pattern mining is to find all frequent subsequences, i.e., the

subsequences whose occurrence frequency in the set of

sequences is no less than min_support. Many previous

studies contributed to the efficient mining of sequential

patterns or other frequent patterns in time-related data.

Srikant and Agrawal [3] generalized their definition of

Sequential patterns in [2] to include time constraints,

sliding time window, and user-defined taxonomy, and

presented apriori-based improved algorithm GSP (i.e.,

generalized sequential patterns).

 Almost all of the above proposed methods for

mining sequential patterns and other time-related frequent

patterns are apriori-like, i.e., based on the apriori principle,

which states the fact that any super-pattern of an infrequent

pattern cannot be frequent, and based on a candidate

generation-and test paradigm proposed in association

mining [1].

A typical apriori-like sequential pattern mining method,

such as GSP [3], adopts a multiple-pass, candidate

generation-and-test approach outlined as follows: The first

scan finds all of the frequent items that form the set of

single item frequent sequences. Each subsequent pass starts

with a seed set of sequential patterns, which is the set of

sequential patterns found in the previous pass. This seed set

is used to generate new potential patterns, called candidate

sequences, based on the apriori principle. Each candidate

sequence contains one more item than a seed sequential

pattern, where each element in the pattern may contain one

item or multiple items. The number of items in a sequence

is called the length of the sequence. So, all the candidate

sequences in a pass will have the same length. The scan of

the database in one pass finds the support for each

candidate sequence. All the candidates with support no less

than min_support in the database form the set of the newly

found sequential patterns. This set is then used as the seed

set for the next pass. The algorithm terminates when no

new sequential pattern is found in a pass, or when no

candidate sequence can be generated.

 Second approach adopts a divide-and-conquers

pattern-growth principle as follows: Sequence databases

are recursively projected into a set of smaller projected

databases based on the current sequential pattern, and

sequential patterns are grown in each projected databases

by exploring only locally frequent fragments. Based on this

philosophy, we first proposed a straightforward pattern

growth method, FreeSpan (Frequent pattern-projected

Sequential pattern mining) [8], which reduce the efforts of

candidate subsequence generation. In this paper, we

introduce another and more efficient method, called

PrefixSpan [10] (Prefix-projected Sequential pattern

mining), which offers ordered growth and reduced

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

projected databases. To further improve the performance, a

pseudoprojection technique is developed in PrefixSpan. A

comprehensive performance study shows that PrefixSpan,

in most cases, outperforms the apriori-based algorithm

GSP, FreeSpan, and SPADE [5] (a sequential pattern

mining algorithm that adopts vertical data format) and

PrefixSpan integrated with pseudoprojection, is the fastest

among all the tested algorithms. Furthermore, our

experiments show that PrefixSpan consumes a much

smaller memory space in comparison with GSP and

SPADE. The Sequential pattern mining can be further

extended to mining multidimensional sequential patterns;

time-interval sequential pattern, closed sequential pattern

and constraint based sequential patterns.

2. Mining Sequential Pattern by Apriori Based

Algorithms

The Apriori [1] [Agrawal and Srikant 1994] and AprioriAll

[Agrawal and Srikant 1995] set the basis for a breed of

algorithms that depend largely on the apriori property and

use the Apriori-generate join procedure to generate

candidate sequences. The apriori property states that ―All

nonempty subsets of a frequent itemset must also be

frequent. It is also described as antimonotonic.

Key features of Apriori-based algorithm are:

I. Breadth-first search: Apriori-based algorithms are

described as breath-first (level-wise) search algorithms

because they construct all the k-sequences, in kth iteration

of the algorithm, as they traverse the search space.

II. Generate-and-test: This feature is used by the very

early algorithms in sequential pattern mining. Algorithms

that depend on this feature only display an inefficient

pruning method and generate an explosive number of

candidate sequences and then test each one by one for

satisfying some user specified constraints, consuming a lot

of memory in the early stages of mining.

III. Multiple scans of the database: This feature entails

scanning the original database to ascertain whether a long

list of generated candidate sequences is frequent or not. It

is a very undesirable characteristic of most apriori-based

algorithms and requires a lot of processing time and I/O

cost.

Classification of Apriori based mining algorithm

2.1 GSP: The GSP (Generalized Sequential Pattern)

algorithm described by Agrawal and Shrikant [3] makes

multiple passes over the data. This algorithm is not a main-

memory algorithm. If the candidates do not fit in memory,

the algorithm generates only as many candidates as will fit

in memory and the data is scanned to count the support of

these candidates. Frequent sequences resulting from these

candidates are written to disk, while those candidates

without minimum support are deleted. This procedure is

repeated until all the candidates have been counted. As

shown in Fig 1, first GSP algorithm finds all Frequent

Sequence and orders them with respect to their support

ignoring ones for which support < min_sup. Then for each

level (i.e., sequences of length-k), the algorithm scans

database to collect support count for each candidate

sequence and generates candidate length (k+1) sequences

from length-k frequent sequences using Apriori. This is

repeated until no frequent sequence or no candidate can be

found.

Frequent Sequence

Candidate Generation

 Candidate

Pruning

Fig. 1 Candidate generation and Candidate pruning in

GSP

2.2. SPIRIT: The Novel idea of the SPIRIT algorithm is to

use regular expressions as flexible constraint specification

tool [4]. It involves a generic user-specified regular

expression constraint on the mined patterns, thus enabling

considerably versatile and powerful restrictions. In order to

push the constraining inside the mining process, in practice

the algorithm uses an appropriately relaxed, that is less

restrictive, version of the constraint. There exist several

versions of the algorithm, differing in the degree to which

the constraints are enforced to prune the search space of

pattern during computation. Choice of regular expressions

(REs) as a constraint specification tool is motivated by two

important factors. First, REs provide a simple, natural

syntax for the succinct specification of families of

sequential patterns. Second, REs possess sufficient

expressive power for specifying a wide range of interesting,

non-trivial pattern constraints.

2.3 SPADE: M. Zaki [5] introduce SPADE algorithm to

divide the candidate sequences into groups by items such

that each group can be completely stored in the main

memory. In addition, this algorithm uses the ID-List

technique to reduce the costs for computing support counts.

An ID-list of a sequence keeps a list of pairs, which

indicate the positions that it appears in the database. In a

pair, the first value stands for a customer sequence and the

second refers to a transaction in it, which contains the last

itemset of the sequence. For the example database in

Table:1 , the ID-list of sequence <(a, g)(b)> is <(1,2), (1,6),

(4,3), (4,4)>, where the pair (1,2) means that this sequence

appears in the first customer sequence and ends in the

second transaction. Note that a sequence may appear more

than once in the same customer sequence, and therefore

more than one pair will be recorded

Itemset

< (1) (2 5)(3)>

Itemsets

 < (1) (2) (3) >

< (1) (2) (5) >

< (1) (5) (3) >

< (2) (3) (4) >

<(2) (5) (3) >

< (3) (4) (5) >

< (5) (3) (4) >

Length-1 Itemsets

< (1) (2) (3) (4)>

< (1) (2) (5) (3)>

< (1) (5) (3 4) >

< (2) (3) (4) (5) >

< (2 5) (3 4) >

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

Table: 1 Example of SPADE

CID Customer Sequence

1 (a,e,g) (b) (h) (f) (c) (b,f)

2 (b) (d,f) (e)

3 (b,f,g)

4 (f) (a,g) (b,f,h) (b,f)

This approach computes the support count of a candidate k-

sequence generated by merging the ID-lists of any two

frequent (k-1) sequences with the same (k-2)-prefix.

Consider the same database in Table 1 .To compute the

support count of sequence < (a, g) (h) (f)>, the SPADE

algorithm merges the two ID-lists of sequences <(a, g)(h)>

and <(a, g)(f)>, which are <(1,3), (4,3)> and<(1,4), (1,6),

(4,3), (4,4)> respectively. As a result, the ID-list of

sequence < (a, g) (h) (f)> is < (1, 4), (1, 6), (4, 4)>,

indicating that this sequence appears in the first and the

fourth customer sequences and therefore has a support

count of 2. The SPADE algorithm costs a lot to repeatedly

merge the ID-lists of frequent sequences for a large number

of candidate sequences.

2.4 SPAM: To reduce cost of merging, Ayres et al. [6]

adopt the lattice concept in the SPAM (Sequential Pattern

Mining) algorithm but represent each ID-list as a vertical

bitmap The SPAM uses a vertical bitmap data structure

representation of the database as shown in table 2 and 3,

which is similar to the ID-list in SPADE., which can be

completely stored in the main memory. With the size of

current main memories reaching gigabytes and growing

many moderate-sized to large databases will soon become

completely memory resident.

Table: 2 Dataset sorted by CID and TID

Table: 3 Sequence for each customer

A database D is a set of tuples (CID, TID, X), where CID is

a customer-id, TID is a transaction-id based on the

transaction time, and X is an itemset such that X Subset of I.

each tuples in D referred to as a transaction. All the

transactions with the same cid can be viewed as a sequence

of itemsets ordered by increasing TID.

Table 2 shows the dataset consisting of tuples of (customer

id, transaction id, itemset) for the transaction. It is sorted by

customer id and then transaction id. Table 3 shows the

database in its sequence representation. Consider the

sequence of customer 2, the size of this sequence is 2, and

the length of this sequence is 4.

3. Mining Sequential Pattern by Pattern

Growth Based Algorithms

Soon after the apriori-based methods of the mid-1990s, the

pattern growth-method [7] emerged in the early 2000s, as a

solution to the problem of generate-and-test. The key idea

is to avoid the candidate generation step altogether, and to

focus the search on a restricted portion of the initial

database. The search space partitioning feature plays an

important role in pattern-growth. Almost every pattern-

growth algorithm starts by building a representation of the

database to be mined, then proposes a way to partition the

search space, and generates as few candidate sequences as

possible by growing on the already mined frequent

sequences, and applying the apriori property as the search

space is being traversed recursively looking for frequent

sequences. The early algorithms started by using projected

databases, for example, FreeSpan [Han et al. 2000],

PrefixSpan [Pei et al. 2001], with the latter being the most

influential.

Key features of pattern growth-based algorithm

are:

I Search space partitioning: It allows partitioning of the

generated search space of large candidate sequences for

efficient memory management. There are different ways to

partition the search space. Once the search space is

partitioned, smaller partitions can be mined in parallel.

Advanced techniques for search space partitioning include

projected databases and conditional search, referred to as

split-and-project techniques.

II Tree projection: Tree projection usually accompanies

pattern-growth algorithms. Here, algorithms implement a

physical tree data structure representation of the search

space, which is then traversed breadth-first or depth-first in

search of frequent sequences, and pruning is based on the

apriori property.

III Depth-first traversal: That depth-first search of the

search space makes a big difference in performance, and

also helps in the early pruning of candidate sequences as

well as mining of closed sequences [Wang and Han 2004].

The main reason for this performance is the fact that depth-

first traversal utilizes far less memory, more directed

search space, and thus less candidate sequence generation

than breadth-first or post-order which are used by some

early algorithms.

IV Candidate sequence pruning: Pattern-growth

algorithms try to utilize a data structure that allows them to

prune candidate sequences early in the mining process.

This result in early display of smaller search space and

maintain a more directed and narrower search procedure

CID TID Itemsets

1 1 {a,b,d}

1 3 {b,c,d}

1 6 {b,c,d}

2 2 {b}

2 4 {a,b,c}

CID Sequence

1 ({a,b,d} {b,c,d} {b,c,d})

2 ({b } {a,b,c})

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

Classification of Prefix Growth based mining

algorithm:

3.1. FREESPAN: - FreeSpan [8] was developed to

substantially reduce the expensive candidate generation

and testing of Apriori, while maintaining its basic heuristic.

In general, FreeSpan uses frequent items to recursively

project the sequence database into projected databases

while growing subsequence fragments in each projected

database. Each projection partitions the database and

confines further testing to progressively smaller and more

manageable units. The trade-off is a considerable amount

of sequence duplication as the same sequence could appear

in more than one projected database. However, the size of

each projected database usually (but not necessarily)

decreases rapidly with recursion.

For a sequence α = (s1…….sl) the itemset s1U…. Usl is

called a’s projected itemset. FreeSpan is based on the

following property: If an itemset X is infrequent, any

sequence whose projected itemset is a superset of X cannot

be a sequential pattern. FreeSpan mines sequential patterns

by partitioning the search space and projecting the

sequence sub databases recursively based on the projected

itemsets.

Let f_list = (x1…….xn) be a list of all frequent items in

sequence database S. Then, the complete set of sequential

patterns in S can be divided into n disjoint subsets: 1) the

set of sequential patterns containing only item x1, 2) those

containing item x2 but no item in {x3; . . . ; xn} and so on.

In general, the ith subset (1 < i ≤ n) is the set of sequential

patterns containing item xi but no item in {xi+1; . . . ; xn}.

Then, the database projection can be performed as follows:

At the time of deriving p’s projected database from DB, the

set of frequent items X of DB is already known.

Only those items in X will need to be projected into p’s

projected database. This effectively discards irrelevant

information and keeps the size of the projected database

minimal. By recursively doing so, one can mine the

projected databases and generate the complete set of

sequential patterns in the given partition without

duplication. The details are illustrated in the following

example:

Table: 4 Example (Freespan):-

Sequence_id Sequence

1 <a (abc) (ac) d (cf) >

2 < (ad) c (bc) (ae) >

3 < (ef) (ab) (df) cb >

4 < eg (af) cbc >

Let the sequence database be S given in Table 4 and

min_support = 2 the set of items in the database is {a; b; c; d;

e; f; g}. FreeSpan first scans S, collects the support for each

item, and finds the set of frequent items. Frequent items are

listed in support descending order (in the form of “item :

support”), that is, f_list = a : 4; b : 4; c : 4; d : 3; e : 3; f :

3. They form six length-one sequential patterns: <a>:4;

:4; <c>:4; <d>:3; <e>:3; <f>:3:

According to the f_list, the complete set of sequential

patterns in S can be divided into six disjoint subsets:

1. The ones containing only item a.

2. The ones containing item b but no item after b in f

list.

3. The ones containing item c but no item after c in f

list, and so on, and, finally.

4. The ones containing item f.

The sequential patterns related to the six partitioned subsets

can be mined by constructing six projected databases

(obtained by one additional scan of the original database).

3.2. WAP-MINE: - It is a pattern growth and tree

structure-mining technique with its WAP-tree structure.

Here the sequence database is scanned only twice to build

the WAP tree from frequent sequences along with their

support; a ―header table is maintained to point at the first

occurrence for each item in a frequent itemset, which is

later tracked in a threaded way to mine the tree for frequent

sequences, building on the suffix. The WAP-mine [9]

algorithm is reported to have better scalability than GSP

and to outperform it by a margin. Although it scans the

database only twice and can avoid the problem of

generating explosive candidates as in apriori-based

methods, WAP-mine suffers from a memory consumption

problem, as it recursively reconstructs numerous

intermediate WAP-trees during mining, and in particular,

as the number of mined frequent patterns increases. This

problem was solved by the PLWAP algorithm [Lu and

Ezeife 2003], which builds on the prefix using position-

coded nodes.

Fig. 2: Classification of Prefix Growth based mining

algorithm

3.3. PREFIXSPAN: - Based on the analysis of the

FreeSpan algorithm, one can see that one may still have to

pay high cost at handling projected databases. Is it possible

to reduce the size of projected database and the cost of

checking at every possible position of a potential candidate

sequence. To avoid checking every possible combination

of a potential candidate sequence, one can first fix the order

of items within each element. Since items within an

element of a sequence can be listed in any order, without

loss of generality, one can assume that they are always

listed alphabetically.

 Pei et al. [10] employ the projection scheme in

the PrefixSpan algorithm to project the customer sequences

into overlapping groups called projected databases such

that all the customer sequences in each group have the

same prefix which corresponds to a frequent sequence. For

the example database in Table 5, assuming that the

minimum support count is two, the PrefixSpan algorithm

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

first scans the database to find the frequent 1-sequences,

i.e. <(a)>, <(b)>, <(e)>, <(f)>, <(g)>, and <(h)>. After that,

this algorithm generates the projected database for each

frequent 1-sequence. For instance, Table 5 shows the

projected database of < (a)>. For this projected database,

the PrefixSpan algorithm continues the discovery of

frequent 1-sequences to form the frequent 2-sequences with

prefix < (a)>. In this way, the PrefixSpan algorithm

recursively generates the projected database for each

frequent k-sequence to find frequent (k+1)-sequences.

Obviously, the PrefixSpan algorithm costs a lot to

recursively generate a large number of projected databases.

Table: 5 Customer Database

Table: 6 Projected databases of <a>

4. Extension of Sequential Pattern Mining

Sequential pattern mining has been intensively studied

during recent years; there exists a great diversity of

algorithms for sequential pattern mining. Along with that

Motivated by the potential applications for the sequential

patterns, numerous extensions of the initial definition have

been proposed which may be related to other types of time-

related patterns or to the addition of time constraints. Some

extensions of those algorithms for special purposes such as

multidimensional, closed, time interval, and constraint

based sequential pattern mining are discussed in following

section.

I. Multidimensional Sequential Pattern Mining:

Mining sequential patterns with single dimension means

that we only consider one attribute along with time stamps

in pattern discovery process, while mining sequential

patterns with multiple dimensions we can consider multiple

attributes at the same time. In contrast to sequential pattern

mining in single dimension, mining multiple dimensional

sequential patterns introduced by Helen Pinto and Jiawei

Han [11] can give us more informative and useful patterns.

For example we may get a traditional sequential pattern

from the supermarket database that after buying product a

most people also buy product b in a defined time interval.

However, using multiple dimensional sequential pattern

mining we can further find different groups of people have

different purchase patterns.

For example, M.E. students always buy product b after

they buy product a, while this sequential rule weakens for

other groups of students. Hence, we can see that multiple-

dimensional sequential pattern mining can provide more

accurate information for further decision support.

II. Discovering Time-interval Sequential Pattern:

Although sequential patterns can tell us what items are

frequently bought together and in what order, they cannot

provide information about the time span between items for

further decision support. In other words, although we know

which items will be bought after the preceding items, we

have no idea when the next purchase will happen. Y. L.

Chen, M. C. Chiang, and M. T. Kao [12] have given the

solution of this problem that is to generalize the mining

problem into discovering time-interval sequential patterns,

which tells not only the order of items but also the time

intervals between successive items. An example of time-

interval sequential pattern is (a, I1, b, I2, c), meaning that

we buy item a first, then after an interval of I1 we buy item

b, and finally after an interval of I2 we buy item c. Similar

type of work done by C. Antunes, A. L. Oliveira, [10] by

presenting the concept of gap constraint. A gap constraint

imposes a limit on the separation of two consecutive

elements of an identified sequence. This type of constraints

is critical for the applicability of these methods to a number

of problems, especially those with long sequence.

III. Closed Sequential Pattern Mining:

The sequential pattern mining algorithms developed so far

have good performance in databases consisting of short

frequent sequences. Unfortunately, when mining long

frequent sequences, or when using very low support

thresholds, the performance of such algorithms often

degrades dramatically. This is not surprising: Assume the

database contains only one long frequent sequence < (a1)

(a2) . . . (a100) >, it will generate 2
100

 −1 frequent

subsequence if the minimum support is 1, although all of

them except the longest one are redundant because they

have the same support as that of < (a1) (a2) . . . (a100) > .

So proposed an alternative but equally powerful solution

instead of mining the complete set of frequent

subsequence, we mine frequent closed subsequence only,

i.e., those containing no super-sequence with the same

support. This mining technique will generate a significant

less number of discovered sequences than the traditional

methods while preserving the same expressive power since

the whole set of frequent subsequences together with their

supports, can be derived easily from the mining results

[13].

IV. Discovering Constraint Based Sequential

Pattern:

Although efficiency of mining the complete set of

sequential patterns has been improved substantially, in

CID Customer Sequence

1 (a,e,g) (b) (h) (f)(c)(b,f)

2 (b)(d,f)(e)

3 (b,f,g)

4 (f)(a,g)(b,f,h)(b,f)

CID Customer Sequences

1 (_, e, g)(b)(h)(f)(c)(b, f)

4 (_, g)(b, f, h)(b, f)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

many cases sequential pattern mining still faces tough

challenges in both effectiveness and efficiency. On the one

hand, there could be a large number of sequential patterns

in a large database. A user is often interested in only a

small subset of such patterns. Presenting the complete set

of sequential patterns may make the mining result hard to

understand and hard to use. To overcome this problem Jian

Pei, Jiawei Han and Wei Wang [15] have systematically

presented the problem of pushing various constraints deep

into sequential pattern mining using pattern growth

methods.

5. Future Direction and Research Challenges:

Future Research in this area will be focus on improving the

efficiency of the algorithms either with new structures, new

representations or by managing the database in the main

memory. So based on these criteria’s sequential pattern

mining is classified into two major groups, Apriori Based

and Pattern Growth based algorithms. So, from the

previous studies and comparative analysis of various

mining algorithms, it is clear that PrefixSpan Algorithm

more efficient with respect to running time, space

utilization and scalability and it could be more efficient if

we use DISC (Direct Sequent Comparison) Strategy [14]

with PrefixSpan Algorithm in the pruning step its say we

can remove nonfrequent sequences according to the other

sequences with the same length. But still there are various

research challenges in this field of data mining. Some of

the research challenges are: –

 To find the complete set of patterns, when possible,

satisfying the minimum support (Frequency)

threshold.

 Algorithm should handle large search space.

 Algorithm should avoid repeated scanning of

database during mining process.

 To use some method by which early candidate

sequence pruning and search space partitioning will

be possible for efficient mining of patterns.

 For large sequence database there can be a

possibility of having distributed sequential pattern

mining to provide scalability.

5. CONCLUSION: - From the study of various sequential

pattern mining algorithms, we can say that PrefixSpan [9]

is an efficient pattern growth method because it

outperforms GSP [3], FreeSpan [7] and SPADE [5]. It

explores prefix-projection which reduces the size of

projected database and leads to efficient processing in

sequential pattern mining. Also Bi-level projection and

pseudo-projection may improve mining efficiency. It is

clear that PrefixSpan Algorithm is more efficient with

respect to running time, space utilization and scalability

then Apriori based algorithms and FreeSpan algorithm, and

PrefixSpan consumes a much smaller memory space in

comparison with GSP and SPADE.

References:-

[1] R. Agrawal and R. Srikant, “Fast Algorithms for

Mining Association Rules,” Proc. 1994 Int’l Conf. Very

Large Data Bases (VLDB ’94), pp. 487-499, Sept. 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential

Patterns,” Proc.1995 Int’l Conf. Data Eng. (ICDE ’95), pp.

3-14, Mar. 1995.

[3] Srikant R. and Agrawal R., ―Mining sequential

patterns: Generalizations and performance improvements,

Proceedings of the 5th International Conference Extending

Database Technology, 1996, 1057, 3-17.

[4] M. Garofalakis, R. Rastogi, and K. Shim, "SPIRIT:

Sequential pattern mining with regular expression

constraints", VLDB'99, 1999.

[5] M. Zaki, "SPADE: An efficient algorithm for mining

frequent sequences, Machine Learning, 2001.

[6] AYRES, J., FLANNICK, J., GEHRKE, J., AND YIU,

T., ―Sequential pattern mining using a bitmap

representation, In Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining-2002.

[7] J.Han, J.Pei and Y.Yin. “Mining freq. patt.without

candidate Generation”, in Proceeding of ACM SIGMOD

International Conference Management of Data, 2000, pp.1-

12.

[8] Han J., Dong G., Mortazavi-Asl B., Chen Q., Dayal U.,

Hsu M.-C., Freespan: Frequent pattern-projected sequential

pattern mining, Proceedings 2000 Int. Conf. Knowledge

Discovery and Data Mining (KDD’00), 2000, pp. 355-359.

[9] Han, J., Pei, J., Mortazavi-Asl, B. and Zhu, H.,

―Mining access patterns efficiently from web logs”, In

Proceedings of the Pacific- Asia Conference on Knowledge

Discovery and Data Mining (PAKDD’00) Kyoto Japan,

2000.

[10] J. Pei, J. Han, B. Mortazavi-Asi, H. Pino, "PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix- Projected

Pattern Growth", ICDE'01, 2001.

[11] Helen Pinto Jiawei Han Jian Pei Ke Wang,

―Multidimensional Sequential Pattern Mining, In Proc.

2001 Int. Conf. Information and Knowledge Management

(CIKM’01), Atlanta, GA, Nov. 2001 pp. 81–88.

[12] Chen, Y.L., Chiang, M.C. and Kao, M.T,

―Discovering time interval sequential patterns in sequence

databases, Expert Syst. Appl., Vol. 25, No. 3, 2003, pp.

343–354.

[13] Yan, X., Han, J., and Afshar, R., ―CloSpan: Mining

closed sequential patterns in large datasets, In Third SIAM

International Conference on Data Mining (SDM), San

Fransico, CA, 2003, pp. 166–177.

[14] Ding-Ying Chiu, Yi-Hung Wu, Arbee L.P. Chen “An

Efficient Algorithm for Mining Frequent Sequences by a

New Strategy without Support Counting” Data engineer,

2004, proc. of 20 International conference, pp.375-386,

2004.

[15] Jian Pei, Jiawei Han, Wei Wang, ―Constraint-based

sequential pattern mining: the pattern growth methods, J

Intell Inf Syst, Vol. 28, No.2, 2007, pp. 133 –160.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

6www.ijert.org

