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Abstract  
 

Mining sequential patterns has been a focused theme in 

data mining research for over a decade. One of the 

promising approaches of SPM is mainly deal with finding 

the behaviour of a sequential pattern that can help in many 

analyzing applications like predicting next event. There are 

several efficient algorithms that cope with the 

computationally expensive task of sequential pattern 

mining. One of them is Generalized Sequential Pattern 

(GSP) mining algorithm which is an Apriori-based 

algorithm used for sequential pattern mining. The GSP 

algorithm has several deficiencies whenever the database 

size is large, too many scanning of database when seeking 

frequent sequences and very large amount of candidate 

sequences generated unnecessary. PrefixSpan which is 

pattern growth method outperforms GSP and solves all 

above problems. Its main idea is to examine only the prefix 

subsequences with minimum support. This paper 

investigates these algorithms by classifying study of SPM 

algorithms. 

 
Keywords: - Sequential pattern mining, Apriori based Algorithms, 

Pattern growth based algorithms. 

 

1. Introduction  
 

SEQUENTIAL pattern mining [2], which discovers 

frequent subsequences as patterns in a sequence database, 

is an important data mining problem with broad 

applications, including the analysis of customer purchase 

patterns or Web access patterns, the analysis of sequencing 

or time related processes such as scientific experiments, 

natural disasters, and disease treatments, the analysis of 

DNA sequences, etc.  

              The sequential pattern mining problem was first 

introduced by Agrawal and Srikant in [2] Given a set of 

sequences, where each sequence consists of a list of 

elements and each element consists of a set of items, and 

given a user-specified min_support threshold, sequential 

pattern mining is to find all frequent subsequences, i.e., the 

subsequences whose occurrence frequency in the set of 

sequences is no less than min_support. Many previous 

studies contributed to the efficient mining of sequential 

patterns or other frequent patterns in time-related data. 

Srikant and Agrawal [3] generalized their definition of  

 

 

Sequential patterns in [2] to include time constraints, 

sliding time window, and user-defined taxonomy, and 

presented apriori-based improved algorithm GSP (i.e., 

generalized sequential patterns).  

            Almost all of the above proposed methods for 

mining sequential patterns and other time-related frequent 

patterns are apriori-like, i.e., based on the apriori principle, 

which states the fact that any super-pattern of an infrequent 

pattern cannot be frequent, and based on a candidate 

generation-and test paradigm proposed in association 

mining [1]. 

A typical apriori-like sequential pattern mining method, 

such as GSP [3], adopts a multiple-pass, candidate 

generation-and-test approach outlined as follows: The first 

scan finds all of the frequent items that form the set of 

single item frequent sequences. Each subsequent pass starts 

with a seed set of sequential patterns, which is the set of 

sequential patterns found in the previous pass. This seed set 

is used to generate new potential patterns, called candidate 

sequences, based on the apriori principle. Each candidate 

sequence contains one more item than a seed sequential 

pattern, where each element in the pattern may contain one 

item or multiple items. The number of items in a sequence 

is called the length of the sequence. So, all the candidate 

sequences in a pass will have the same length. The scan of 

the database in one pass finds the support for each 

candidate sequence. All the candidates with support no less 

than min_support in the database form the set of the newly 

found sequential patterns. This set is then used as the seed 

set for the next pass. The algorithm terminates when no 

new sequential pattern is found in a pass, or when no 

candidate sequence can be generated. 

            Second approach adopts a divide-and-conquers 

pattern-growth principle as follows: Sequence databases 

are recursively projected into a set of smaller projected 

databases based on the current sequential pattern, and 

sequential patterns are grown in each projected databases 

by exploring only locally frequent fragments. Based on this 

philosophy, we first proposed a straightforward pattern 

growth method, FreeSpan (Frequent pattern-projected 

Sequential pattern mining) [8], which reduce the efforts of 

candidate subsequence generation. In this paper, we 

introduce another and more efficient method, called 

PrefixSpan [10] (Prefix-projected Sequential pattern 

mining), which offers ordered growth and reduced 
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projected databases. To further improve the performance, a 

pseudoprojection technique is developed in PrefixSpan. A 

comprehensive performance study shows that PrefixSpan, 

in most cases, outperforms the apriori-based algorithm 

GSP, FreeSpan, and SPADE [5] (a sequential pattern 

mining algorithm that adopts vertical data format) and 

PrefixSpan integrated with pseudoprojection, is the fastest 

among all the tested algorithms. Furthermore, our 

experiments show that PrefixSpan consumes a much 

smaller memory space in comparison with GSP and 

SPADE. The Sequential pattern mining can be further 

extended to mining multidimensional sequential patterns; 

time-interval sequential pattern, closed sequential pattern 

and constraint based sequential patterns. 

 

2. Mining Sequential Pattern by Apriori Based 

Algorithms 
 

The Apriori [1] [Agrawal and Srikant 1994] and AprioriAll 

[Agrawal and Srikant 1995] set the basis for a breed of 

algorithms that depend largely on the apriori property and 

use the Apriori-generate join procedure to generate 

candidate sequences. The apriori property states that ―All 

nonempty subsets of a frequent itemset must also be 

frequent. It is also described as antimonotonic. 

 

Key features of Apriori-based algorithm are: 

 
I. Breadth-first search: Apriori-based algorithms are 

described as breath-first (level-wise) search algorithms 

because they construct all the k-sequences, in kth iteration 

of the algorithm, as they traverse the search space. 

 

II. Generate-and-test: This feature is used by the very 

early algorithms in sequential pattern mining. Algorithms 

that depend on this feature only display an inefficient 

pruning method and generate an explosive number of 

candidate sequences and then test each one by one for 

satisfying some user specified constraints, consuming a lot 

of memory in the early stages of mining. 

 

III. Multiple scans of the database: This feature entails 

scanning the original database to ascertain whether a long 

list of generated candidate sequences is frequent or not. It 

is a very undesirable characteristic of most apriori-based 

algorithms and requires a lot of processing time and I/O 

cost. 

 

Classification of Apriori based mining algorithm 

 
2.1 GSP: The GSP (Generalized Sequential Pattern) 

algorithm described by Agrawal and Shrikant [3] makes 

multiple passes over the data. This algorithm is not a main-

memory algorithm. If the candidates do not fit in memory, 

the algorithm generates only as many candidates as will fit 

in memory and the data is scanned to count the support of 

these candidates. Frequent sequences resulting from these 

candidates are written to disk, while those candidates 

without minimum support are deleted. This procedure is 

repeated until all the candidates have been counted. As 

shown in Fig 1, first GSP algorithm finds all Frequent 

Sequence and orders them with respect to their support 

ignoring ones for which support < min_sup. Then for each 

level (i.e., sequences of length-k), the algorithm scans 

database to collect support count for each candidate 

sequence and generates candidate length (k+1) sequences 

from length-k frequent sequences using Apriori. This is 

repeated until no frequent sequence or no candidate can be 

found. 

 

Frequent Sequence 

 

Candidate Generation 

 

 

   Candidate 

Pruning 

 

Fig. 1 Candidate generation and Candidate pruning in 

GSP 

 

2.2. SPIRIT: The Novel idea of the SPIRIT algorithm is to 

use regular expressions as flexible constraint specification 

tool [4]. It involves a generic user-specified regular 

expression constraint on the mined patterns, thus enabling 

considerably versatile and powerful restrictions. In order to 

push the constraining inside the mining process, in practice 

the algorithm uses an appropriately relaxed, that is less 

restrictive, version of the constraint. There exist several 

versions of the algorithm, differing in the degree to which 

the constraints are enforced to prune the search space of 

pattern during computation. Choice of regular expressions 

(REs) as a constraint specification tool is motivated by two 

important factors. First, REs provide a simple, natural 

syntax for the succinct specification of families of 

sequential patterns. Second, REs possess sufficient 

expressive power for specifying a wide range of interesting, 

non-trivial pattern constraints. 

 

2.3 SPADE:  M. Zaki [5] introduce SPADE algorithm to 

divide the candidate sequences into groups by items such 

that each group can be completely stored in the main 

memory. In addition, this algorithm uses the ID-List 

technique to reduce the costs for computing support counts. 

An ID-list of a sequence keeps a list of pairs, which 

indicate the positions that it appears in the database. In a 

pair, the first value stands for a customer sequence and the 

second refers to a transaction in it, which contains the last 

itemset of the sequence. For the example database in 

Table:1 , the ID-list of sequence <(a, g)(b)> is <(1,2), (1,6), 

(4,3), (4,4)>, where the pair (1,2) means that this sequence 

appears in the first customer sequence and ends in the 

second transaction. Note that a sequence may appear more 

than once in the same customer sequence, and therefore 

more than one pair will be recorded 

Itemset 

< (1) (2 5)(3)> 

Itemsets 

  < (1) (2) (3) > 

< (1) (2) (5) > 

< (1) (5) (3) > 

< (2) (3) (4) > 

<(2) (5) (3) > 

< (3) (4) (5) > 

< (5) (3) (4) > 

Length-1 Itemsets 

< (1) (2) (3) (4)> 

< (1) (2) (5) (3)> 

< (1) (5) (3 4) > 

< (2) (3) (4) (5) > 

< (2 5) (3 4) > 
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Table: 1 Example of SPADE 

CID Customer Sequence 

1 (a,e,g) (b) (h) (f) (c) (b,f) 

2 (b) (d,f) (e) 

3 (b,f,g) 

4 (f) (a,g) (b,f,h) (b,f) 

 

This approach computes the support count of a candidate k-

sequence generated by merging the ID-lists of any two 

frequent (k-1) sequences with the same (k-2)-prefix. 

Consider the same database in Table 1 .To compute the 

support count of sequence < (a, g) (h) (f)>, the SPADE 

algorithm merges the two ID-lists of sequences <(a, g)(h)> 

and <(a, g)(f)>, which are <(1,3), (4,3)> and<(1,4), (1,6), 

(4,3), (4,4)> respectively. As a result, the ID-list of 

sequence < (a, g) (h) (f)> is < (1, 4), (1, 6), (4, 4)>, 

indicating that this sequence appears in the first and the 

fourth customer sequences and therefore has a support 

count of 2. The SPADE algorithm costs a lot to repeatedly 

merge the ID-lists of frequent sequences for a large number 

of candidate sequences. 

 

2.4 SPAM: To reduce cost of merging, Ayres et al. [6] 

adopt the lattice concept in the SPAM (Sequential Pattern 

Mining) algorithm but represent each ID-list as a vertical 

bitmap The SPAM uses a vertical bitmap data structure 

representation of the database as shown in table 2 and 3, 

which is similar to the ID-list in SPADE., which can be 

completely stored in the main memory. With the size of 

current main memories reaching gigabytes and growing 

many moderate-sized to large databases will soon become 

completely memory resident.    

      

Table: 2 Dataset sorted by CID and TID 

 

Table: 3 Sequence for each customer 

 

A database D is a set of tuples (CID, TID, X), where CID is 

a customer-id, TID is a transaction-id based on the 

transaction time, and X is an itemset such that X Subset of I. 

each tuples in D referred to as a transaction. All the 

transactions with the same cid can be viewed as a sequence 

of itemsets ordered by increasing TID. 

Table 2 shows the dataset consisting of tuples of (customer 

id, transaction id, itemset) for the transaction. It is sorted by 

customer id and then transaction id. Table 3 shows the 

database in its sequence representation. Consider the 

sequence of customer 2, the size of this sequence is 2, and 

the length of this sequence is 4. 

 

3. Mining Sequential Pattern by Pattern 

Growth Based Algorithms 
 

Soon after the apriori-based methods of the mid-1990s, the 

pattern growth-method [7] emerged in the early 2000s, as a 

solution to the problem of generate-and-test. The key idea 

is to avoid the candidate generation step altogether, and to 

focus the search on a restricted portion of the initial 

database. The search space partitioning feature plays an 

important role in pattern-growth. Almost every pattern-

growth algorithm starts by building a representation of the 

database to be mined, then proposes a way to partition the 

search space, and generates as few candidate sequences as 

possible by growing on the already mined frequent 

sequences, and applying the apriori property as the search 

space is being traversed recursively looking for frequent 

sequences. The early algorithms started by using projected 

databases, for example, FreeSpan [Han et al. 2000], 

PrefixSpan [Pei et al. 2001], with the latter being the most 

influential. 

 

Key features of pattern growth-based algorithm 

are: 
 
I Search space partitioning: It allows partitioning of the 

generated search space of large candidate sequences for 

efficient memory management. There are different ways to 

partition the search space. Once the search space is 

partitioned, smaller partitions can be mined in parallel. 

Advanced techniques for search space partitioning include 

projected databases and conditional search, referred to as 

split-and-project techniques.  

 

II Tree projection: Tree projection usually accompanies 

pattern-growth algorithms. Here, algorithms implement a 

physical tree data structure representation of the search 

space, which is then traversed breadth-first or depth-first in 

search of frequent sequences, and pruning is based on the 

apriori  property. 

 

III Depth-first traversal: That depth-first search of the 

search space makes a big difference in performance, and 

also helps in the early pruning of candidate sequences as 

well as mining of closed sequences [Wang and Han 2004]. 

The main reason for this performance is the fact that depth-

first traversal utilizes far less memory, more directed 

search space, and thus less candidate sequence generation 

than breadth-first or post-order which are used by some 

early algorithms.  

 

IV Candidate sequence pruning: Pattern-growth 

algorithms try to utilize a data structure that allows them to 

prune candidate sequences early in the mining process. 

This result in early display of smaller search space and 

maintain a more directed and narrower search procedure 

CID TID Itemsets 

1 1 {a,b,d} 

1 3 {b,c,d} 

1 6 {b,c,d} 

2 2 {b} 

2 4 {a,b,c} 

CID Sequence 

1 ({a,b,d} {b,c,d} {b,c,d}) 

2 ({b } {a,b,c}) 
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Classification of Prefix Growth based mining 

algorithm:  

 
3.1. FREESPAN: - FreeSpan [8] was developed to 

substantially reduce the expensive candidate generation 

and testing of Apriori, while maintaining its basic heuristic. 

In general, FreeSpan uses frequent items to recursively 

project the sequence database into projected databases 

while growing subsequence fragments in each projected 

database. Each projection partitions the database and 

confines further testing to progressively smaller and more 

manageable units. The trade-off is a considerable amount 

of sequence duplication as the same sequence could appear 

in more than one projected database. However, the size of 

each projected database usually (but not necessarily) 

decreases rapidly with recursion. 

For a sequence α = (s1…….sl) the itemset s1U…. Usl is 

called a’s projected itemset. FreeSpan is based on the 

following property: If an itemset X is infrequent, any 

sequence whose projected itemset is a superset of X cannot 

be a sequential pattern. FreeSpan mines sequential patterns 

by partitioning the search space and projecting the 

sequence sub databases recursively based on the projected 

itemsets.  

Let f_list = (x1…….xn) be a list of all frequent items in 

sequence database S. Then, the complete set of sequential 

patterns in S can be divided into n disjoint subsets: 1) the 

set of sequential patterns containing only item x1, 2) those 

containing item x2 but no item in {x3; . . . ; xn} and so on. 

In general, the ith subset (1 < i ≤ n) is the set of sequential 

patterns containing item xi but no item in {xi+1; . . . ; xn}. 

Then, the database projection can be performed as follows: 

At the time of deriving p’s projected database from DB, the 

set of frequent items X of DB is already known. 

Only those items in X will need to be projected into p’s 

projected database. This effectively discards irrelevant 

information and keeps the size of the projected database 

minimal. By recursively doing so, one can mine the 

projected databases and generate the complete set of 

sequential patterns in the given partition without 

duplication. The details are illustrated in the following 

example: 

      

Table: 4 Example (Freespan):- 

Sequence_id Sequence 

1 <a (abc) (ac) d (cf) > 

2 < (ad) c (bc) (ae) > 

3 < (ef) (ab) (df) cb > 

4 < eg (af) cbc > 

 

Let the sequence database be S given in Table 4 and 

min_support = 2 the set of items in the database is {a; b; c; d; 

e; f; g}. FreeSpan first scans S, collects the support for each 

item, and finds the set of frequent items. Frequent items are 

listed in support descending order (in the form of “item : 

support”), that is, f_list = a : 4; b : 4; c : 4; d : 3; e : 3; f : 

3. They form six length-one sequential patterns: <a>:4;  

<b>:4;  <c>:4;  <d>:3;  <e>:3;  <f>:3: 

According to the f_list, the complete set of sequential 

patterns in S can be divided into six disjoint subsets: 

1. The ones containing only item a. 

2. The ones containing item b but no item after b in f 

list. 

3. The ones containing item c but no item after c in f 

list, and so on, and, finally. 

4. The ones containing item f. 

The sequential patterns related to the six partitioned subsets 

can be mined by constructing six projected databases 

(obtained by one additional scan of the original database). 

 

3.2. WAP-MINE: - It is a pattern growth and tree 

structure-mining technique with its WAP-tree structure. 

Here the sequence database is scanned only twice to build 

the WAP tree from frequent sequences along with their 

support; a ―header table is maintained to point at the first 

occurrence for each item in a frequent itemset, which is 

later tracked in a threaded way to mine the tree for frequent 

sequences, building on the suffix. The WAP-mine [9] 

algorithm is reported to have better scalability than GSP 

and to outperform it by a margin. Although it scans the 

database only twice and can avoid the problem of 

generating explosive candidates as in apriori-based 

methods, WAP-mine suffers from a memory consumption 

problem, as it recursively reconstructs numerous 

intermediate WAP-trees during mining, and in particular, 

as the number of mined frequent patterns increases. This 

problem was solved by the PLWAP algorithm [Lu and 

Ezeife 2003], which builds on the prefix using position- 

coded nodes. 

 

 
Fig. 2: Classification of Prefix Growth based mining 

algorithm 

 

3.3. PREFIXSPAN: - Based on the analysis of the 

FreeSpan algorithm, one can see that one may still have to 

pay high cost at handling projected databases. Is it possible 

to reduce the size of projected database and the cost of 

checking at every possible position of a potential candidate 

sequence. To avoid checking every possible combination 

of a potential candidate sequence, one can first fix the order 

of items within each element. Since items within an 

element of a sequence can be listed in any order, without 

loss of generality, one can assume that they are always 

listed alphabetically.  

                 Pei et al. [10] employ the projection scheme in 

the PrefixSpan algorithm to project the customer sequences 

into overlapping groups called projected databases such 

that all the customer sequences in each group have the 

same prefix which corresponds to a frequent sequence. For 

the example database in Table 5, assuming that the 

minimum support count is two, the PrefixSpan algorithm 
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first scans the database to find the frequent 1-sequences, 

i.e. <(a)>, <(b)>, <(e)>, <(f)>, <(g)>, and <(h)>. After that, 

this algorithm generates the projected database for each 

frequent 1-sequence. For instance, Table 5 shows the 

projected database of < (a)>. For this projected database, 

the PrefixSpan algorithm continues the discovery of 

frequent 1-sequences to form the frequent 2-sequences with 

prefix < (a)>. In this way, the PrefixSpan algorithm 

recursively generates the projected database for each 

frequent k-sequence to find frequent (k+1)-sequences. 

Obviously, the PrefixSpan algorithm costs a lot to 

recursively generate a large number of projected databases. 

 

Table: 5 Customer Database 

 

Table: 6 Projected databases of <a> 

 

4. Extension of Sequential Pattern Mining 
 

Sequential pattern mining has been intensively studied 

during recent years; there exists a great diversity of 

algorithms for sequential pattern mining. Along with that 

Motivated by the potential applications for the sequential 

patterns, numerous extensions of the initial definition have 

been proposed which may be related to other types of time-

related patterns or to the addition of time constraints. Some 

extensions of those algorithms for special purposes such as 

multidimensional, closed, time interval, and constraint 

based sequential pattern mining are discussed in following 

section. 

 

I. Multidimensional Sequential Pattern Mining:  

 

Mining sequential patterns with single dimension means 

that we only consider one attribute along with time stamps 

in pattern discovery process, while mining sequential 

patterns with multiple dimensions we can consider multiple 

attributes at the same time. In contrast to sequential pattern 

mining in single dimension, mining multiple dimensional 

sequential patterns introduced by Helen Pinto and Jiawei 

Han [11] can give us more informative and useful patterns. 

For example we may get a traditional sequential pattern 

from the supermarket database that after buying product a 

most people also buy product b in a defined time interval. 

However, using multiple dimensional sequential pattern 

mining we can further find different groups of people have 

different purchase patterns. 

For example, M.E. students always buy product b after 

they buy product a, while this sequential rule weakens for 

other groups of students. Hence, we can see that multiple-

dimensional sequential pattern mining can provide more 

accurate information for further decision support. 

 

II. Discovering Time-interval Sequential Pattern:  
 

 

Although sequential patterns can tell us what items are 

frequently bought together and in what order, they cannot 

provide information about the time span between items for 

further decision support. In other words, although we know 

which items will be bought after the preceding items, we 

have no idea when the next purchase will happen. Y. L. 

Chen, M. C. Chiang, and M. T. Kao [12] have given the 

solution of this problem that is to generalize the mining 

problem into discovering time-interval sequential patterns, 

which tells not only the order of items but also the time 

intervals between successive items. An example of time-

interval sequential pattern is (a, I1, b, I2, c), meaning that 

we buy item a first, then after an interval of I1 we buy item 

b, and finally after an interval of I2 we buy item c. Similar 

type of work done by C. Antunes, A. L. Oliveira, [10] by 

presenting the concept of gap constraint. A gap constraint 

imposes a limit on the separation of two consecutive 

elements of an identified sequence. This type of constraints 

is critical for the applicability of these methods to a number 

of problems, especially those with long sequence. 

 

III. Closed Sequential Pattern Mining:  

 
The sequential pattern mining algorithms developed so far 

have good performance in databases consisting of short 

frequent sequences. Unfortunately, when mining long 

frequent sequences, or when using very low support 

thresholds, the performance of such algorithms often 

degrades dramatically. This is not surprising: Assume the 

database contains only one long frequent sequence < (a1) 

(a2) . . . (a100) >, it will generate   2
100

 −1 frequent 

subsequence if the minimum support is 1, although all of 

them except the longest one are redundant because they 

have the same support as that of < (a1) (a2) . . . (a100) > . 

So proposed an alternative but equally powerful solution 

instead of mining the complete set of frequent 

subsequence, we mine frequent closed subsequence only, 

i.e., those containing no super-sequence with the same 

support. This mining technique will generate a significant 

less number of discovered sequences than the traditional 

methods while preserving the same expressive power since 

the whole set of frequent subsequences together with their 

supports, can be derived easily from the mining results 

[13]. 

 

IV. Discovering Constraint Based Sequential 

Pattern:  

 
Although efficiency of mining the complete set of 

sequential patterns has been improved substantially, in 

CID Customer Sequence 

1 (a,e,g) (b) (h) (f)(c)(b,f) 

2 (b)(d,f)(e) 

3 (b,f,g) 

4 (f)(a,g)(b,f,h)(b,f) 

CID Customer Sequences 

1 (_, e, g)(b)(h)(f)(c)(b, f) 

4 (_, g)(b, f, h)(b, f) 
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many cases sequential pattern mining still faces tough 

challenges in both effectiveness and efficiency. On the one 

hand, there could be a large number of sequential patterns 

in a large database. A user is often interested in only a 

small subset of such patterns. Presenting the complete set 

of sequential patterns may make the mining result hard to 

understand and hard to use. To overcome this problem Jian 

Pei, Jiawei Han and Wei Wang [15] have systematically 

presented the problem of pushing various constraints deep 

into sequential pattern mining using pattern growth 

methods. 

 

5. Future Direction and Research Challenges:  
 

Future Research in this area will be focus on improving the 

efficiency of the algorithms either with new structures, new 

representations or by managing the database in the main 

memory. So based on these criteria’s sequential pattern 

mining is classified into two major groups, Apriori Based 

and Pattern Growth based algorithms. So, from the 

previous studies and comparative analysis of various 

mining algorithms, it is clear that PrefixSpan Algorithm 

more efficient with respect to running time, space 

utilization and scalability and it could be more efficient if 

we use DISC (Direct Sequent Comparison) Strategy [14] 

with PrefixSpan Algorithm in the pruning step its say we 

can remove nonfrequent sequences according to the other 

sequences with the same length. But still there are various 

research challenges in this field of data mining. Some of 

the research challenges are: – 

 To find the complete set of patterns, when possible, 

satisfying the minimum support (Frequency) 

threshold. 

 Algorithm should handle large search space.  

 Algorithm should avoid repeated scanning of 

database during mining process.  

 To use some method by which early candidate 

sequence pruning and search space partitioning will 

be possible for efficient mining of patterns. 

 For large sequence database there can be a 

possibility  of having distributed sequential pattern 

mining to  provide scalability.  

 

5. CONCLUSION: - From the study of various sequential 

pattern mining algorithms, we can say that PrefixSpan [9] 

is an efficient pattern growth method because it 

outperforms GSP [3], FreeSpan [7] and SPADE [5]. It 

explores prefix-projection which reduces the size of 

projected database and leads to efficient processing in 

sequential pattern mining. Also Bi-level projection and 

pseudo-projection may improve mining efficiency. It is 

clear that PrefixSpan Algorithm is more efficient with 

respect to running time, space utilization and scalability 

then Apriori based algorithms and FreeSpan algorithm, and 

PrefixSpan consumes a much smaller memory space in 

comparison with GSP and SPADE.  
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