

A Comparitative Analysis of different Scheduling Algorithm for Different Real

Time Operating Systems

 Suresh P Maria Navin J R Pradeep

 Asst.Professor, Dept. of CSE Asst.Professor, Dept. of ISE Asst.Professor, Dept of ISE

 SVCE, Bengaluru SVCE, Bengaluru SVCE, Bengaluru

 Suresh.rvce@gmail.com marianavin.jr@gmail.com pradeep.kr22@gmail.com

 Abstract

In this paper we are comparing the scheduling

algorithms in VxWorks and RTLinux. Here we are

going to discuss how the tasks are handled in operating

systems by comparing the two Real Time operating

systems. The paper deals with mainly how the

Algorithm for Scheduling works for different Real Time

Operating systems where we are dealing with

concurrent programming and Parallel Execution.

Benefits in each operating system work differently,

depending on the priority of the system. Since RTLinux

is an open-source and can be compiled to implement

our own scheduling algorithm and it can be a good

choice to implement our own. RTLinux but have two

algorithms included as loadable kernel modules which

are not standard algorithms. They are based on the

Rate Monotonic and Earliest Deadline First

algorithms. When VxWorks was introduced it used the

pre-emptive priority based scheduling algorithm and a

round-robin Scheduling Algorithm.

1. Introduction

In a hard real-time system, a scheduling

algorithm decides what task should be progressed next

depending on its priority. Moreover, it’s not only

priority that can determine if a task should be

progressed, also algorithms can include deadlines

which must be fulfilled. RTLinux and VxWorks are

two of the most used real-time operating systems on the

market. One of the differences is that RTLinux is an

open-source and VxWorks is not. Because of that it is

hard to find detailed information about VxWorks

algorithms. RTLinux scheduling use both priority

based and deadline algorithms. VxWorks only use

priority based scheduling. In RTLinux you have the

possibility to implement own or modified scheduling

algorithms which is a good benefit compared to

VxWorks where you are locked to the developers own

ones.

We are going to explain the different

scheduling algorithms in each operating system and

leave the comparison for the last section of this paper.

We will try to find the different benefits between two

very popular real-time operating systems.

RTLinux is a hard Real-Time operating

system that runs on machines that coexists with Linux

as its lowest priority execution thread. RTLinux is

developed by FSMLabs Inc1 and is available as a

community supported free version as well as a

commercial version from FSMLabs. The commercial

version was developed out from the free version but

have been extensively rewritten by FSMLabs and

works on many architectures while free is mostly X86.

In the free version, a lot component has been added by

the Ocera Project2. In this report we don’t focus on

either the commercial or the free version, we focus on

the two scheduling algorithms which is mentioned most

in associate to the development name RTLinux.

VxWorks is a hard real-time system. It has

been used for a lot of applications but is mostly known

for spacecraft and latest the Mars Exploration Rovers3.

It almost entirely supports the POSIX standard but it’s

not open source so you can’t do any own changes do

1
 FSMLabs Inc. homepage: http://www.fsmlabs.com

2
 For more information visit http://www.ocera.org

3
 For more information visit

http://marsrovers.jpl.nasa.gov/home/index.html

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

281

the kernel and Wind River4, the creator of VxWorks,

do not offer any source code. It supports two

scheduling algorithms a basic pre-emptive priority one

and a round-robin algorithm. It gives the user maximal

control of the code but also leave responsibility for

deadlines to him.

2. Literature Survey

The Rate Monotonic Algorithm

Rate Monotonic algorithm is based on static priority. A

static priority algorithm assigns all priorities at design

time, and those priorities remain constant for the

lifetime of the task. The system assign priorities based

on the expected execution time, task with less

execution time will be assigned higher priority.

 Rate Monotonic scheduler gives higher

priority to tasks with smaller periods.

The following example will illustrate the Rate

Monotonic algorithm, considering three tasks T1, T2

and T3 in fig1. T2 and T3 are periodic tasks, cycle time

of T1 is 30ms, T2 is 40ms and T3 is 50ms. Above you

can see how much time each task is assigned to the

CPU. T1 will be assigned highest priority because it

has the shortest cycle time, followed by T2 and T3. If

we have tasks which is non-periodic it gives the lowest

priority and will only be assigned CPU time when none

of the periodic processes are requesting the CPU. This

is because we don’t know the deadline of this task, or

the deadline is very far away.

In order to work correctly, certain pre-emption must be

satisfied:

n is the total task number in the system. Ci stands for

the longest execution time in the system and Tn is the

release period assuming that the deadline is one period

later.The workload U must fulfil a given statement to

guarantee that no deadlines will be met. If we let n go

to infinity we get a percentage of 69.3% which is the

percentage of the CPU utilization time the real-time

tasks cannot exceed to guarantee that no deadlines will

be met for a system where we have unpredictable

number of tasks.

4
 Wind River Inc. homepage:

http://www.windriver.com

Earliest deadline first scheduling

Earliest Deadline First schedule algorithm is based

on dynamic priority. The dynamic priority algorithm

means that the tasks are assigned priority levels during

run-time. A task will be assigned higher priority if

circumstances request it. The Earliest Deadline First

schedule algorithm assign a priority for each task

according to the deadline of the task. Tasks with

earliest deadline will be assigned highest priority.

 Earliest Deadline First scheduler gives highest

priority to tasks with earliest deadline

The following example will illustrate the Earliest

Deadline First algorithm, considering three tasks T1,

T2 and T3 in fig2.

T1, T2 and T3 are periodic task with deadlines when

the periodic time have exceeded. For non-periodic task

the deadline can be assigned as an absolute deadline.

Each thread in RTLinux holds two deadline attribute.

One is relative deadline and the other one is absolute

deadline. The relative deadline is the deadline assigned

due to the periodic time, an absolute deadline is the

moment in time at which the response must be

completed.

In order to schedule correctly, certain pre-

emption must be satisfied:

Fig1. Example of scheduling based on Rate Monotonic

Algorithm

Fig2. Example of scheduling based on Earliest

Deadline First Algorithm

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

282

n is the total task number in the system. Ci stands for

the longest execution time in the system and Tn is the

release period assuming that the deadline is one period

later.

As long the CPU utilization is less than 100%

the Earliest Deadline First algorithms will always work.

This is only the theoretical number when dynamic

priority requires more complex systems to work.

3. Scheduling in VxWorks

 VxWorks is a hard real-time system. It has

been used for a lot of application from Boeings new

airliner to ABB’s robotics. It’s not open source so you

can’t do any changes to the code. A lot of facilities are

provided through available modules from either Wind

River, the creator of VxWorks or from third party

companies.

 A task is a keyword in VxWorks. A task is a

program similar to a process or a thread. A tasks

context among other things includes a program counter,

the CPU registers, a stack and timers. When there is a

context switch, a switch between the current running

task and a task that is ready to run, all these things must

be copied from memory into the CPU. A critical

element in all real-time operating systems is that the

context switch is fast. VxWorks includes advanced

functionality do optimize the context switch by leave

out some registers that may not be necessary.

A task in VxWorks can have different states.

A state diagram is shown in fig 3.

 Fig3. Task state diagram

A short description of each state:

o Pended – a task is blocked for some reason

o Ready – a task is ready to run.

o Delayed – a task is in sleep for some reason.

o Suspended – a task is unavailable for

execution.

When a task is created it will enter the suspended

state and from there it can be activated. There also

exists functionality to create and place a task in the

ready state with one function call. The VxWorks task

management library includes functionality to move

tasks from different states. There is no state to show

that a task is the task current running, like in for

example Nachos. Task can be deleted from all states.

3.1 Standard pre-emptive priority based algorithm

In standard mode VxWorks uses a preemptive

priority based scheduler. Pre-emptive means that the

scheduler directly switches from a current running task

to a task with higher priority even if the task with lower

priority has not finished executing. In standard mode a

task that is executing will run until it is finish even if

there still exist tasks with the same priority.

 Fig4. Pre-emptive standard algorithm in VxWorks

Fig4 show the algorithm in action. It starts with a task,

task i, and when it has run for a while there is a task

with higher priority available, task j. The scheduler will

then automatically do a context switch and replace the

current executing task with the one with higher priority.

After a while there is a task with even higher priority

available, task k. A switch will be made and after that

task k will run until termination, marked with a star in

figure, then task j, will run until termination and after

that task i will run until end.

There are 256 priority levels in VxWorks. The

priority range is counted from 0 to 255. Where the

lowest priority is 255 and highest is 0. Priority is

assigned to a task when it’s created but can also be

changed during running using the taskPrioritySet ()

command. There is no limit in the number of task you

Pended Ready Delayed

Suspended

High

Task i Low

Priority

Task j

Task

k

Task j

Task i

Tim

e

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

283

can create in VxWorks as long as you have enough

memory. There is a convention that program tasks

should have priority from 100-250.

3.2 Round-Robin algorithm

VxWorks can also be enabled to use a round-

robin algorithm. In VxWorks that means that you

assign a timeperiod to the kernel. If there are several

tasks with the same priority, each task will run for the

assigned timeperiod and then leave place for the next

one. Priorities still exist. If there is a task with higher

priority available there will always be a context switch

even if a time period is set. The function for changing

time period is kernelTimeSlice (int ticks) which could

be found in the kernel library.

Round-robin mode does not affect the

performance of a context switch, but there will be more

context switches which could affect performance. Not

either is more memory allocated if round-robin mode is

turned on.

During round-robin algorithm in action. There

are 3 different tasks, two tasks with lower priority and

one with higher priority. In the beginning task i will run

for the selected time period. After that there will be a

context switch to task j, and task j will run until there is

a task, task k, with a higher priority available. Task k is

the only task with high priority so it will run until

completion. After task k has finished, task j will

continue to run because it has time left in its time

period. The time is enough for task j to finish and after

that task i finish.

A problem with this mode is that it can be

hard to set a good time period. If the time period is to

short it will make the scheduler run too often and

require too much of the CPU. A to long period may not

be good for short tasks. If there is a big difference in

the execution time of the tasks the shorter tasks will be

favoured with round-robin. It exist functionality in the

kernel to lock the scheduler from changing tasks.

Maybe it would be a desired solution if you need to

compute something and don’t want some other thread

with higher priority to change with you. Or if the

priority is equal or higher and round-robin mode is

selected.

A problem will occur when you have locked

the scheduler and then wait for some resource held by

some other thread. VxWorks has solved this by then

activate the scheduler, run some other tasks, and when

the old task gets rescheduled it will deactivate the

scheduler again. The functions for deactivate and active

the scheduler is taskLock() and taskUnlock() which

could be found in the task management library.

VxWorks also include functionality for

priority inheritance. It means that if a high priority task

is waiting for a resource held by a lower priority task,

the low priority task will increase its priority to the

highest task waiting for its resource. When the task has

finished executing its critical section it will change its

priority to where it was before.

If you use several priorities you can get problem with

starvation. That means that a task with low priority

never gets a chance to run. The development suite for

VxWorks has the ability to check for starvation and

other problems such like deadlocks and priority

inversion.

3.3 Not Round-Robin vs. Round-Robin

According to the manual you will not get

slower context switches or allocate more memory if

you have round-robin mode selected. Therefore it may

not be a bad solution if you want to split up the work

load fairly among many tasks with the same priority.

It is not possible to enable round-robin for

some priority levels and disable it for others. Either you

use it or not.

4. Comparison between RTLinux and VxWorks

Scheduling

The table below shows a short summary over

scheduling differences in RTLinux and VxWorks.

 RTLinux VxWorks

Standard

algorithm

No standard

algorithm(EDF/

Rate monotonic)

Preemptive

priority based /

Round-Robin

Possible to

implement own

scheduling

algorithms

Yes No

Preemptive based

algorithms

Yes Yes

Dynamic priority Yes No

Static priority Yes Yes

Deadline

architecture

Yes No

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

284

Priority

inheritance

No Yes

4. Conclusions

If you have a periodic system where tasks can

be predicted RTLinux is maybe the best choice. On the

other hand if you have a dynamic system where tasks

can start at random and you don’t in advance know

when a task start VxWorks is maybe a better choice

due to its priority algorithm.

If you have a system based on deadlines

maybe RTLinux is a better choice when it support the

deadline scheduling architecture. VxWorks does not so

it’s up to the user to control that deadlines are met.

Due to RTLinux is open-source software you

have the possibility to implement your own scheduling

algorithms or download someone that is available.

VxWorks is not open-source software so you have to

use the available ones.

Priority inheritance is supported in VxWorks

but not in RTLinux.

5. References

[1] Silberschatz, Galvin & Gagne, “Operating System

Concepts 7th edition” 2005 ISBN: 0-471-69466-5

[2] Wind River Systems Inc, “VxWorks API reference”,

http://www.slac.stanford.edu/exp/glast/flight/sw/vxdocs/VxWo

rks_API_Reference.htm,2006-11-17

[3] Wind River Systems Inc, “Tornado API Reference”,

http://www.slac.stanford.edu/exp/glast/flight/sw/vxdocs/Torn

ado_API_Reference.htm 2006-11-17

[4] Wind River Systems Inc, “Real-Time Processes (RTPs)

for VxWorks 6.0 http://www .windriver.com/

whitepapers/rtps_for_vxworks6_wp.pdf 2006-11-17

[5] Wind River Systems Inc, “Memory Allocation in

VxWorks6.0”http://www.windriver.com/whitepapersvxworks

_memory_allocation_wp.pdf2006-11-17

[6] “RTLinux-3.1 tgz package and RTLinuxFree

documentation” http -11-172006

[7] FSMLabs Inc, “Technical White pages”

http://www.fsmlabs.com/literature.html 2006-11-17

[8] Patricia Balbastre & Ismael Ripoll, “Integrated Dynamic

Priority Scheduler for RTLinux”http://rtportal.upv.es /apps/

edf-sched/rtlinux-edf-sched-1.0/doc/edf-sched.pdf, 06-11-17

[9] Kevin Churnetski, “Real-time scheduling algorithms,

taskvisualization”http://scholar.google.com/url?sa=U&q=ttp:/

/www.cs.rit.edu:8080/ms/static/swm/2003/2/kmc6820/writeu

p.pdf,2006-11-17

[10] She Kairui, Bai Shuwei, Zhou Qingguo, Nicholas Mc

Guire, Li Lian, “Analyzing RTLinux/GPL Source Code for

Education”http://dslab.lzu.edu.cn/docs/Publications/Analyzin

g_RTLinuxGPL_Source_Code_for_Education.pdf,06-11-17

[11] David Stewart and Michael Barr, “Introduction to Rate

Monotonic Scheduling” http://www.netrino.com/

Publications/Glossary/RMA.html 2006-11-17.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

285

