A Comparitative Analysis of different Scheduling Algorithm for Different Real
Time Operating Systems

Suresh P
Asst.Professor, Dept. of CSE
SVCE, Bengaluru
Suresh.rvce@gmail.com

Maria Navin J R
Asst.Professor, Dept. of ISE
SVCE, Bengaluru
marianavin.jr@gmail.com

Pradeep
Asst.Professor, Dept of ISE
SVCE, Bengaluru

pradeep.kr22@gmail.com

Abstract

In this paper we are comparing the scheduling
algorithms in VxWorks and RTLinux. Here we are
going to discuss how the tasks are handled in operating
systems by comparing the two Real Time operating
systems. The paper deals with mainly how the
Algorithm for Scheduling works for different Real Time
Operating systems where we are dealing with
concurrent programming and Parallel Execution.
Benefits in each operating system work differently,
depending on the priority of the system. Since RTLinux
is an open-source and can be compiled to implement
our own scheduling algorithm and it can be a good
choice to implement our own. RTLinux but have two
algorithms included as loadable kernel modules which
are not standard algorithms. They are based on the
Rate Monotonic and Earliest Deadline First
algorithms. When VxWorks was introduced it used the
pre-emptive priority based scheduling algorithm and a
round-robin Scheduling Algorithm.

1. Introduction

In a hard real-time system, a scheduling
algorithm decides what task should be progressed next
depending on its priority. Moreover, it’s not only
priority that can determine if a task should be
progressed, also algorithms can include deadlines
which must be fulfilled. RTLinux and VxWorks are
two of the most used real-time operating systems on the
market. One of the differences is that RTLinux is an
open-source and VxWorks is not. Because of that it is
hard to find detailed information about VxWorks
algorithms. RTLinux scheduling use both priority
based and deadline algorithms. VxWorks only use
priority based scheduling. In RTLinux you have the

possibility to implement own or modified scheduling
algorithms which is a good benefit compared to
VxWorks where you are locked to the developers own
ones.

We are going to explain the different
scheduling algorithms in each operating system and
leave the comparison for the last section of this paper.
We will try to find the different benefits between two
very popular real-time operating systems.

RTLinux is a hard Real-Time operating
system that runs on machines that coexists with Linux
as its lowest priority execution thread. RTLinux is
developed by FSMLabs Incl and is available as a
community supported free version as well as a
commercial version from FSMLabs. The commercial
version was developed out from the free version but
have been extensively rewritten by FSMLabs and
works on many architectures while free is mostly X86.
In the free version, a lot component has been added by
the Ocera Project2. In this report we don’t focus on
either the commercial or the free version, we focus on
the two scheduling algorithms which is mentioned most
in associate to the development name RTLinux.

VxWorks is a hard real-time system. It has
been used for a lot of applications but is mostly known
for spacecraft and latest the Mars Exploration Rovers3.
It almost entirely supports the POSIX standard but it’s
not open source so you can’t do any own changes do

! FSMLabs Inc. homepage: http://www.fsmlabs.com
% For more information visit http://www.ocera.org

% For more information visit
http://marsrovers.jpl.nasa.gov/home/index.html

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

281

the kernel and Wind River4, the creator of VxWorks,
do not offer any source code. It supports two
scheduling algorithms a basic pre-emptive priority one
and a round-robin algorithm. It gives the user maximal
control of the code but also leave responsibility for
deadlines to him.

2. Literature Survey

The Rate Monotonic Algorithm

Rate Monotonic algorithm is based on static priority. A
static priority algorithm assigns all priorities at design
time, and those priorities remain constant for the
lifetime of the task. The system assign priorities based
on the expected execution time, task with less
execution time will be assigned higher priority.

e Rate Monotonic scheduler gives higher

priority to tasks with smaller periods.

The following example will illustrate the Rate
Monotonic algorithm, considering three tasks T1, T2
and T3 in figl. T2 and T3 are periodic tasks, cycle time
of T1 is 30ms, T2 is 40ms and T3 is 50ms. Above you
can see how much time each task is assigned to the
CPU. T1 will be assigned highest priority because it
has the shortest cycle time, followed by T2 and T3. If
we have tasks which is non-periodic it gives the lowest
priority and will only be assigned CPU time when none
of the periodic processes are requesting the CPU. This
is because we don’t know the deadline of this task, or
the deadline is very far away.

In order to work correctly, certain pre-emption must be
satisfied:

U= C/T; <n(V2-1)
i=1

n is the total task number in the system. Ci stands for
the longest execution time in the system and Tn is the
release period assuming that the deadline is one period
later.The workload U must fulfil a given statement to
guarantee that no deadlines will be met. If we let n go
to infinity we get a percentage of 69.3% which is the
percentage of the CPU utilization time the real-time
tasks cannot exceed to guarantee that no deadlines will
be met for a system where we have unpredictable
number of tasks.

* Wind River Inc. homepage:
http://www.windriver.com

0 10 20 30 40 50 60 70 80 90 100

Figl. Example of scheduling based on Rate Monotonic
Algorithm

Earliest Deadline First schedule algorithm is based
on dynamic priority. The dynamic priority algorithm
means that the tasks are assigned priority levels during
run-time. A task will be assigned higher priority if
circumstances request it. The Earliest Deadline First
schedule algorithm assign a priority for each task
according to the deadline of the task. Tasks with
earliest deadline will be assigned highest priority.

e Earliest Deadline First scheduler gives highest
priority to tasks with earliest deadline
The following example will illustrate the Earliest
Deadline First algorithm, considering three tasks T1,
T2 and T3 in fig2.

0 10 20 30 40 50 60 70 80 90 100

Fig2. Example of scheduling based on Earliest

T1, T2 and T3 are periodic task with deadlines when
the periodic time have exceeded. For non-periodic task
the deadline can be assigned as an absolute deadline.
Each thread in RTLinux holds two deadline attribute.
One is relative deadline and the other one is absolute
deadline. The relative deadline is the deadline assigned
due to the periodic time, an absolute deadline is the
moment in time at which the response must be
completed.

In order to schedule correctly, certain pre-
emption must be satisfied:

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

110 time(ms)

110 time(ms)

282

U=YC/T.< I

i=1

n is the total task number in the system. Ci stands for
the longest execution time in the system and Tn is the
release period assuming that the deadline is one period
later.

As long the CPU utilization is less than 100%
the Earliest Deadline First algorithms will always work.
This is only the theoretical number when dynamic
priority requires more complex systems to work.

3. Scheduling in VxWorks

VxWorks is a hard real-time system. It has
been used for a lot of application from Boeings new
airliner to ABB’s robotics. It’s not open source so you
can’t do any changes to the code. A lot of facilities are
provided through available modules from either Wind
River, the creator of VxWorks or from third party
companies.

A task is a keyword in VxWorks. A task is a
program similar to a process or a thread. A tasks
context among other things includes a program counter,
the CPU registers, a stack and timers. When there is a
context switch, a switch between the current running
task and a task that is ready to run, all these things must
be copied from memory into the CPU. A critical
element in all real-time operating systems is that the
context switch is fast. VxWorks includes advanced
functionality do optimize the context switch by leave
out some registers that may not be necessary.

A task in VxWorks can have different states.
A state diagram is shown in fig 3.

Pended —» Ready i«

b
o
o
=
)
<
o
o

Fig3. Task state diagram
A short description of each state:

o Pended — a task is blocked for some reason

o Ready —atask is ready to run.

High Task

i 3
Low Task i Task i

o Delayed — a task is in sleep for some reason.

o Suspended - a task is wunavailable for
execution.

When a task is created it will enter the suspended
state and from there it can be activated. There also
exists functionality to create and place a task in the
ready state with one function call. The VxWorks task
management library includes functionality to move
tasks from different states. There is no state to show
that a task is the task current running, like in for
example Nachos. Task can be deleted from all states.

3.1 Standard pre-emptive priority based algorithm

In standard mode VxWorks uses a preemptive
priority based scheduler. Pre-emptive means that the
scheduler directly switches from a current running task
to a task with higher priority even if the task with lower
priority has not finished executing. In standard mode a
task that is executing will run until it is finish even if
there still exist tasks with the same priority.

Priority

A

Task j Task j

» Tim

Fig4. Pre-emptive standard algorithm in VxWorks

Fig4 show the algorithm in action. It starts with a task,
task i, and when it has run for a while there is a task
with higher priority available, task j. The scheduler will
then automatically do a context switch and replace the
current executing task with the one with higher priority.
After a while there is a task with even higher priority
available, task k. A switch will be made and after that
task k will run until termination, marked with a star in
figure, then task j, will run until termination and after
that task i will run until end.

There are 256 priority levels in VxWorks. The
priority range is counted from 0 to 255. Where the
lowest priority is 255 and highest is 0. Priority is
assigned to a task when it’s created but can also be
changed during running using the taskPrioritySet ()
command. There is no limit in the number of task you

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

283

can create in VxWorks as long as you have enough
memory. There is a convention that program tasks
should have priority from 100-250.

3.2 Round-Robin algorithm

VxWorks can also be enabled to use a round-
robin algorithm. In VxWorks that means that you
assign a timeperiod to the kernel. If there are several
tasks with the same priority, each task will run for the
assigned timeperiod and then leave place for the next
one. Priorities still exist. If there is a task with higher
priority available there will always be a context switch
even if a time period is set. The function for changing
time period is kernelTimeSlice (int ticks) which could
be found in the kernel library.

Round-robin mode does not affect the
performance of a context switch, but there will be more
context switches which could affect performance. Not
either is more memory allocated if round-robin mode is
turned on.

During round-robin algorithm in action. There
are 3 different tasks, two tasks with lower priority and
one with higher priority. In the beginning task i will run
for the selected time period. After that there will be a
context switch to task j, and task j will run until there is
a task, task k, with a higher priority available. Task K is
the only task with high priority so it will run until
completion. After task k has finished, task j ‘will
continue to run because it has time left in its time
period. The time is enough for task j to finish and after
that task i finish.

A problem with this mode is that it can be
hard to set a good time period. If the time period is to
short it will make the scheduler run too often and
require too much of the CPU. A to long period may not
be good for short tasks. If there is a big difference in
the execution time of the tasks the shorter tasks will be
favoured with round-robin. It exist functionality in the
kernel to lock the scheduler from changing tasks.
Maybe it would be a desired solution if you need to
compute something and don’t want some other thread
with higher priority to change with you. Or if the
priority is equal or higher and round-robin mode is
selected.

A problem will occur when you have locked
the scheduler and then wait for some resource held by
some other thread. VxWorks has solved this by then
activate the scheduler, run some other tasks, and when
the old task gets rescheduled it will deactivate the
scheduler again. The functions for deactivate and active
the scheduler is taskLock() and taskUnlock() which
could be found in the task management library.

VxWorks also include functionality for
priority inheritance. It means that if a high priority task
is waiting for a resource held by a lower priority task,
the low priority task will increase its priority to the
highest task waiting for its resource. When the task has
finished executing its critical section it will change its
priority to where it was before.

If you use several priorities you can get problem with
starvation. That means that a task with low priority
never gets a chance to run. The development suite for
VxWorks has the ability to check for starvation and
other problems such like deadlocks and priority
inversion.

3.3 Not Round-Robin vs. Round-Robin

According to the manual you will not get
slower context switches or allocate more memory if
you have round-robin mode selected. Therefore it may
not be a bad solution if you want to split up the work
load fairly among many tasks with the same priority.

It is not possible to enable round-robin for
some priority levels and disable it for others. Either you
use it or not.

4. Comparison between RTLinux and VxWorks
Scheduling
The table below shows a short summary over

scheduling differences in RTLinux and VxWorks.

RTLinux VxWorks
Standard No standard | Preemptive
algorithm algorithm(EDF/ | priority based /
Rate monotonic) | Round-Robin
Possible to | Yes No
implement own
scheduling
algorithms
Preemptive based | Yes Yes
algorithms
Dynamic priority | Yes No
Static priority Yes Yes
Deadline Yes No
architecture

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

284

Priority No Yes
inheritance

4. Conclusions

If you have a periodic system where tasks can
be predicted RTLinux is maybe the best choice. On the
other hand if you have a dynamic system where tasks
can start at random and you don’t in advance know
when a task start VxWorks is maybe a better choice
due to its priority algorithm.

If you have a system based on deadlines
maybe RTLinux is a better choice when it support the
deadline scheduling architecture. VxWorks does not so
it’s up to the user to control that deadlines are met.

Due to RTLinux is open-source software you
have the possibility to implement your own scheduling
algorithms or download someone that is available.
VxWorks is not open-source software so you have to
use the available ones.

Priority inheritance is supported in VxWorks
but not in RTLinux.

5. References

[1] Silberschatz, Galvin & Gagne, “Operating System
Concepts 7" edition” 2005 ISBN: 0-471-69466-5

[2] Wind River Systems Inc, “VxWorks API reference”,
http://www.slac.stanford.edu/exp/glast/flight/sw/vxdocs/VxWo
rks_API_Reference.htm,2006-11-17

[3] Wind River Systems Inc, “Tornado API Reference”,
http://www.slac.stanford.edu/exp/glast/flight/sw/vxdocs/Torn
ado APl _Reference.htm 2006-11-17

[4] Wind River Systems Inc, “Real-Time Processes (RTPs)
for VxWorks 6.0 http://www .windriver.com/
whitepapers/rtps_for_vxworks6 wp.pdf 2006-11-17

[5] Wind River Systems Inc, “Memory Allocation in
VxWorks6.0”http://www.windriver.com/whitepapersvxworks
memory_allocation_wp.pdf2006-11-17

[6] “RTLinux-3.1 tgz package and
documentation” http -11-172006

[7] FSMLabs Inc, “Technical White
http://www.fsmlabs.com/literature.html 2006-11-17

RTLinuxFree

pages”

[8] Patricia Balbastre & Ismael Ripoll, “Integrated Dynamic
Priority Scheduler for RTLinux”http:/rtportal.upv.es /apps/
edf-sched/rtlinux-edf-sched-1.0/doc/edf-sched.pdf, 06-11-17

[9] Kevin Churnetski, “Real-time scheduling algorithms,
taskvisualization”http://scholar.google.com/url?sa=U&q=ttp:/

Jwww.cs.rit.edu:8080/ms/static/swm/2003/2/kmc6820/writeu
p.pdf,2006-11-17

[10] She Kairui, Bai Shuwei, Zhou Qingguo, Nicholas Mc
Guire, Li Lian, “Analyzing RTLinux/GPL Source Code for
Education”http://dslab.lzu.edu.cn/docs/Publications/Analyzin
g_RTLinuxGPL Source Code for Education.pdf,06-11-17

[11] David Stewart and Michael Barr, “Introduction to Rate
Monotonic Scheduling” http://www.netrino.com/
Publications/Glossary/RMA.html 2006-11-17.

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

285

