
A Comparative Study of Classical Substitution

Ciphers

Anjlee Verma

School of Computer Engineering

Lovely Professional University

Phagwara, Punjab

Navjot Kaur

Department of CSE/IT

CGC Jhanjeri

Mohali, Punjab

Abstract— with the rapid development in the technology, the

call for security has also raised its pitch and Information

Security has become an important issue during last decades.

Cryptography; emerged as a solution; has reserved its

unvanquishable place in the field of security. The principle

objective guiding the design of any cryptographic algorithm

must be the security it provides against unauthorized attack.

But, the performance and cost implementation of the algorithms

are also those factors which we cannot ignore. So, there is

always a deemed necessity to analyze, standardize and represent

these algorithms to the future researchers and struggling

students so that they can learn to design effective and innovative

techniques for securing data. In this paper, 7 classical

substitution algorithms i.e., Affine, Atbash, Caesar, Modified

Caeser Baconian, Polybius square and Letter number ciphers

are implemented, and their performance is compared by

encoding input files of various sizes on LINUX platform. All the

algorithms are implemented in C++ language using QT creator,

so that a fair comparison of execution speeds can be done. On

the basis of experiments, it is concluded that Caesar cipher the

best amongst the algorithms selected for the implementation.

Index Terms— Cryptography, encryption, decryption,

substitution cipher.

I.

INTRODUCTION

“The strength of any system is no greater than its weakest

link”. If we want to protect the data throughout its lifetime,
we must ensure that protection mechanisms are implemented
on each and every component of the information processing
system. Various mechanisms can be commonly adopted in
order to provide protection to our resources:

 First attempt can be done by limiting access to the

computer system or media.

 Second by creating different profiles or access control

mechanisms according to the roles.

 Third level of security can be provided by restricting

physical access.

 Above approaches can be effective up to a certain, but
can be equally disadvantageous and can possess serious
shortcomings. So, a more fundamental approach is provided
for maintaining data security. This approach is also called
Cryptography or Cryptology [1].

Cryptography (also known as cryptology) is a study and
practice of hiding information. It is the technique in which a
piece of raw data is taken, scrambled into gibberish
mathematically, yet allowing for decrypting back into the
original plain data. In other words, we can say that it is an art
of manipulating messages so that they become more secure. It
consists of processes of encoding and decoding.
Cryptography includes the techniques for creating various
systems, procedures or algorithms for secret writing. Whereas
cryptanalysis consists of the techniques of breaking them.[2]
Cryptology was well established in ancient times, amongst
both Greeks and Romans and both of them used to practice
different forms of cryptography.[3] In cryptography, ciphers
are classified into various categories on the basis of their
functionality. But in this paper we will be covering,
implementing, analyzing and comparing one class of ciphers
which is „substitution Ciphers.‟

In the field of cryptology, a „Substitution Cipher‟ is a way
of encrypting in which the units of plaintext replaced with
the pre decided cipher text on the basis of a regular
system/algorithm; here, the "units" may be taken as single
letters (the most common approach), pairs of letters, triplets
of letters, combinations of the above, and so forth. The
receiver decrypts text by performing the substitution in
reverse. The important fact about a substitution cipher is that,
in a substitution cipher, the sequence in which units of the
plaintext appear is retained in the cipher text, but the units
themselves are modified. Further, there are various flavors of
substitution ciphers. If the cipher operates on single letter of
plaintext, it is known as a „Simple Substitution Cipher‟. On
the other hand, if a cipher works on larger groups of letters
then it is known to be a „Polygraphic Substitution Cipher‟.
More classifications of substitution ciphers also exist in the
form of „Monoalphabetic Ciphers‟ and „Polyalphabetic
Ciphers‟. In a Monoalphabetic cipher, a fixed substitution is
used over the entire piece of plain text, whereas a
polyalphabetic cipher uses a number of substitutions at
different places in the message, where a unit from the
plaintext is mapped to one of several possibilities in the
ciphertext and vice versa. [4]

In this paper, the level of security an algorithm provides,
is not compared. But main focus is kept on comparing some
basic

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

360

classical substitution ciphers on the basis of their
performance and ease of implementation.

The rest of this paper is organized as follows:

Section 2 describes the algorithms selected for the
implementation. Section 3 tells about the platform, the
language, tools used for the implementation and other details.
Section 4 discusses the performance results and issues. Lastly
section 5 concludes the work.

II. IMPLEMENTED ALGORITHMS

In this work, 7 classical substitution ciphers are

implemented and compared on the basis of their performance:

 Affine Cipher

 Atbash Cipher

 Caesar Cipher

 Modified Caesar Cipher

 Baconian Cipher

 Polybius Square Cipher

 Letter-number Cipher

A. Affine Cipher

 The affine cipher is a type of monoalphabetic

substitution cipher, in which every letter of the plaintext

is converted to its numeric equivalent, then, the same is

encoded by the use of a simple mathematical function,

and then converted back into a letter.[5] Means by using

the mathematical formula, it is ensured that each letter

gets encrypted to another letter. Each letter is enciphered

with the function

(ax + b) mod (26) ……1

where „b‟ is the magnitude of the shift. In the

implementation values of „a‟ and „b‟ are taken to be 5 and

8 respectively.

B. Atbash Cipher

 Atbash cipher was originally used for the Hebrew

alphabet, but can be used for any alphabet. This is a

substitution cipher with a specific key where the letters of

the alphabet get reversed. That means, all 'A's in the plain

text are replaced with letter 'Z's, all 'B's get substituted

with 'Y's, and so on. The Atbash cipher is also an Affine

cipher with the values of „a‟ and „b‟ taken to be 25.

C. Caesar Cipher

 Caesar's code or Caesarian shift cipher, is one of the

easiest and most widely known encryption techniques.

The method is named after Julius Caesar, who made and

used it in his private correspondence to communicate

with his army. This is a type of substitution cipher in

which every letter of the plain code is substituted by a

letter 3 number of positions down the alphabet. For

example, „A‟ would be substituted by letter „D‟, letter „B‟

would become „E‟, and so on. For the last letters, we

consider the alphabet to be looped around in a circle and

"wrap them.”

V becomes Y, X becomes A, Z becomes C, and Y

becomes B. In order to decipher the message back to the

plain text, each letter is replaced by the one three

positions before it. For example, „G‟ becomes „D‟ and

„D‟ becomes „A‟.

D. Modified Caesar Cipher

 This is a flavor of Caesar cipher in which key is not

fixed to be 3. But it is asked to the user. Now if user

enters 5, then „A‟ will become „F‟, „O‟ will become „T‟.

E. Baconian Cipher

 Baconian cipher or also called Bacon's cipher is a

method of steganography devised by Francis Bacon. In

this algorithm, a piece of plain text is encoded into cipher

text by replacing each letter of the plaintext by a group of

five of the letters 'A' or 'B' as shown below:

a AAAAA G AABBA n ABBAA t BAABA
b AAAAB H AABBB o ABBAB u-

v

BAABB

c AAABA i-j ABAAA p ABBBA w BABAA
d AAABB K ABAAB q ABBBB x BABAB
e AABAA L ABABA r BAAAA y BABBA
f AABAB M ABABB s BAAAB z BABBB

 Table 1. Substitution in Baconian cipher

F. Polybius Square

 In the field of cryptology, the Polybius square cipher is

also famous as the Polybius checkerboard. it is a device

invented by the Ancient Greek historian and scholar

Polybius. The original square used the Greek alphabet but

it can be used with any alphabet. In fact, it has also been

used with Japanese hiragana. When used for modern

English alphabet, it appears as:

 1 2 3 4 5

1 A B C D E

2 F G H I/J K

3 L M N O P

4 Q R S T U

5 V W X Y Z

 Table 2. Substitution in PolyBius Square cipher

Now, in order to encrypt a message, Each letter is

represented by its coordinates in the grid. For example,

"CUT" becomes "13 45 44".

G. Letter- Number Cipher

 Letter number is a simple substitution cipher in which

every letter in the plain text is replaced by its position in

number. For example, „hey‟ is encoded to be „8-5-25‟.

 While comparing the performance of algorithms, the

time taken to enter/set up the key by the user is not

considered for a fair evaluation.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

361

III. IMPLEMENTATION DETAILS

All the algorithms are coded, in C++ using QT creator
running on LINUX platform. QT is a cross-platform
complete development framework with tools designed to
streamline the creation of stunning native applications and
amazing user interfaces for desktop, embedded and mobile
platforms.

 It is part of the QT Project. QT Creator is a cross-

platform C++ integrated development environment which is

part of the SDK for the QT GUI Application development

framework. QT Creator includes a code editor and integrates

QT Designer for designing and building graphical user

interfaces (guis) from QT widgets. The code editor in QT

Creator supports syntax highlighting for various languages. In

addition to that, the code editor can parse code in C++. QT

Creator uses the C++ compiler from the GNU Compiler

Collection on Linux. There are some tag lines which are

famous about QT and are self-explanatory. Few of those are

[6]:

 “Power. Beauty. Portability. Target Everything with QT.”

 “Improve Product Lifecycle and Corporate Productivity

with QT”

 “If You Can Imagine It, You Can Build It With QT.”
QT is enriched with brilliant features which are preferred,

recommended and desired by any programmer to develop
tools, projects and GUI applications. Some of them are listed
below:

 QT creator is equipped with advanced code editor.

 QT Creator focuses on providing features that help new

QT users get up and running faster, and also boost the

productivity of experienced QT developers.

 Code editor with C++, QML and ECMA script support.

 Group files together.

 Auto indent selection.

 Add custom build steps.

 Include forms and resource files.

 Specify settings for running applications.

 Parenthesis matching and parenthesis selection modes.

 Display inline error and warning messages.

 Enable to semantically navigate to classes, functions, and

symbols.

 Provide you with context-sensitive help on classes,

functions, and symbols.

 Rename symbols in an intelligent way, so that other

symbols with the same name that belong to other scopes

are not renamed.

 QT has rapid code navigation tools.

 Support for source code refactoring.

 Syntax highlighting and code completion.

 Code folding.

 Static code checking and style hints as you type.

 Context sensitive help.



It has Visual debugger which enables users to interrupt

program execution.

 Step through the program line-by-line or instruction-by-

instruction.

 Set breakpoints.

 Examine call stack contents, watchers, and local and

global variables.

 It has GUI designers which enables users to rapidly

design and build widgets and dialogs using on-screen

forms using the same widgets that will be used in your

application.

 QT enables users to get their source code saved, built

and run with one click. And many more.

Choosing these platforms may have some disadvantages
too, but as mentioned earlier, the main focus of this research
was not to give the most efficient way to implement the
algorithms but just to compare the performance of these
algorithms.

IV. RESULTS

As mentioned above, all the algorithms have been coded
in C++ from scratch using the specification documents.

A. Performance measuring interface

For calculating the time taken by algorithms, an interface
was developed as shown in fig.1.

 Fig 1. Graphical User Interface for performance measurement.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

362

This interface firstly asks users to select the cryptographic
scheme which they want to test. User is here provided with a
drop-down list of 7 substitution ciphers chosen for the
implementation. Then there is a tab “select file size series”.
This tab allows users to choose between three options. Which
are:



10,20,30,40…. Kbs.



1,2,3,4………. Mbs.
 

10,20,30,40…..Mbs.

Then last tab helps users to select the number of files.
Which could be any one of the following:

 10 files.
 20 files.
 30 files.
 40 files.
 50 files.

User can also enter the encryption key in the respective
field which is automatically enabled or disabled as per the
selected cryptographic scheme. As user presses the
“Benchmark start” button, mentioned number of files are
created with random content and input as plain text to the
algorithm chosen. A text field provided at the bottom of the
interface displays the processing steps and time taken by the
particular algorithm for encrypting and decrypting all the
input files.

B. Calculating execution time

 For carrying out the experiment, it was decided to settle
on the use of an Intel Core i3 CPU M 350 @ 2.27Ghz X 4
processor Running 64 bit Fedora 20 operating system.

10 number of files with random contents and sizes series
10,20,30…100Kbs, were given as input to these 7 algorithms
one by one and the time taken by algorithm for carrying out
the whole process of encryption and decryption was recorded.
Here we have not included the time taken by the user to enter
the key. i.e., the calculation of time is started when the user
has entered the key and has pressed the start button. Time is
measured in milli-seconds.

C. Performance results of substitution ciphers

Table 3 shows the time taken by each algorithm for the
process of encoding and decoding. File sizes are varied as
10,20,30,40..100 Kbs and are input to the encryption scheme
and time is recorded. Rows represent the names of algorithms
and columns represent the file size in Kbs and time taken by
the algorithm in milli seconds.

 An obvious way to compare the algorithms will be to
take average of all the execution times and then rank the
algorithms accordingly. Following this criteria, it is clear
from Table 3, Fig. 2, and Fig. 3 that the algorithms chosen for
the implementation appear in the following order on the basis
of their performance:

1. Caesar Cipher (Fastest)

2. Atbash Cipher

3. Affine Cipher

4. Modified Caesar Cipher

5. Baconian Cipher

6. PolyBius Square Cipher

7. Letter Number Cipher (Slowest)

 Table 3. Time taken by ciphers (in milli seconds)

 Fig. 2.

Average time taken by ciphers

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

363

 Fig. 3. Graphical representation of time taken by each algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper, some famous classical substitution ciphers

including Affine, Atbash, Caesar, Modified Caesar,

Baconian, Poly Bius Square, Letter Number cipher have been

implemented and their performance has been compared by

encoding input files of various sizes. All the algorithms were

implemented in a uniform language using the standard

specifications. Then all of them were tested on same LINUX

platform with the help of QT creator for a fair evaluation. In

the end, it is concluded that Caesar cipher is the fastest

algorithm followed by Atbash, Affine and Modified Caesar

cipher respectively. Then there is a significant difference in

the performance of other algorithms which are implemented.

The huge difference is because of the reason that in

Baconian, Polybius square and Letter number ciphers, each

one letter of the alphabet is replaced with a series of letters or

numbers. Which makes Baconian, Polybius and letter number

ciphers to be the slowest substitution ciphers in the respective

orders. A proposed direction for the future work is to

compare the algorithms along with transposition ciphers in

greater depth considering the performance/ security trade-off

scale too.

REFERENCES

[1] http://www.ciphersbyritter.com/LEARNING.HTM

[2] J. F. Dooley, "A Brief History of Cryptology and

Cryptographic
Algorithms," pp. 1-9, 2013.

[3] J. F. Dooley, "Cryptology Before 1500: A Bit of Magic," pp. 11-17,
2013.

[4] D. Salomon, "Polyalphabetic Substitution Ciphers," pp. 59-92, 2003.

[5]

H. N. H. M.

G. Manocheher Kazemi, "On the Affine Ciphers in
Cryptography," 2011, pp. 185-199.

[6] http://qtproject.org/wiki/Category:Tools::QtCreator

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

364

