

A Comparative Study of Cache Optimization

Techniques and Cache Mapping Techniques

Manu Gupta Jyotsna Singh

Department of Computer Science & Engineering Department of Computer Science & Engineering

The NorthCap University, Gurgaon The NorthCap University, Gurgaon

Abstract - For calculation of the processor performance, cache

memory has a significant role. Cache replacement policies have

a major role in structures that effectively supervise them as

processors now require more power with better efficiency along

with good performance. Algorithms aiding such replacement

policies focus more on assistanting the increased data

prerequisites of processors. LRU (Last Recently Used) policy

forecasts a re-reference interval and inputs that reveal a

different re-reference interval performs poorly under this

policy. Performance variance between hypothetical replacement

and LRU is large for highly-associative cache as shown by

recent studies. The LRU strategy is prone to memory loads

where an operational set is bigger than the available size of

cache. For improving the performance of the cache other

replacement algorithms are designed. This paper presents a

lower overhead, high performing cache replacement strategy for

processors that utilize the mechanism of LRU replacement and

talks about various other techniques as well.

Index Terms - Cache optimization; latency; cache miss; memory

hierarchy; vectorization.

I. INTRODUCTION

To improve the computer system potential, caching is useful

to shadow the latency-gap that exists between the CPU and

memory by capitalizing on locality in memory accesses.[3]

Auxiliary Memory size is greater than that of cache. In the

event of an error, when an instruction is requested, a page

from it is replaced in the main memory. The conundrum is

highly common to the block replacement in cache memory

but the page replacement is graver as page transferences from

disk to memory with respect magnitudes lower than block

transfers to cache memory from main memory. The

effectiveness of data caches in numerical code has not been

recognized, however it is demonstrated to be effective for

general-purpose utilisations in bridging the processor and

memory speeds. Only a small fraction of matrix can be held

by a cache ;thus there is a high probability that the data might

have been moved from the cache by the time it has to be

reused.[3][10][15]

Multiple applications on a single chip becomes possible in

modern processors since they contain many cores. The

number of cores on a chip is directly proportional to the

density on the memory system to withstand the memory

requirements of all the executing applications. One of the

methods to obtain great performance from various designs is

to manage the largest level on-chip cache competently so that

off-chip accesses are reduced. Due to high level

incorporation, the floating-point arithmetic competence of

microprocessors has increased considerably in the last few

years. Unfortunately, the increase in processor speed has not

been complemented by a similar increase in memory speed.

To fully realize the potential of the processors, the memory

hierarchy must be proficiently utilized[5][7].

Fig. 1. Memory hierarchy having an on-chip L1 cache, one on-chip L2 cache

a third level off-chip cache.

Cache Optimization Techniques
Optimization is a major problem related to the performance

of cache which is majorly because of the cache pollution in

last level cache. Cache pollution is said to occur when data of

the strong locality gets replaced by the data of weak locality.

since all the cores of multi-core processor shares the last level

cache, affects all of them. To address this issue, a user level

control system is introduced. [3][10]

FIFO

- First in, first out literally.

- Older the page more the probability for it to be replaced.

LRU

- Retains the recently used pages.

- Performs better than RR in practice.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050569
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

903

Random Replacement

- Randomly selects pages When low on space, it randomly

selects the pages.

- Eliminates overhead cost to tracking the page references.

[2]

- Better than FIFO policy.

- Better than LRU for looking memory references.

Second Chance Replacement

- Pages for elimination consider in a round robin manner,

page that has been accessed amid successive

considerations will not be replaced. Page replaced is one

which has not been accessed since its last consideration.

[3]

I.a. Data Access Optimizations [1]

- It is composed of code conversions which change the

direction in which iterations in a loop nest are executed.

This improves temporal locality. [4]

Loop Interchange

- The order of two adjacent loops in a loop nest is reversed

in this transformation. It can be useful if the order of

loop execution is insignificant. It can be generalised to

loop variation by permitting more than two loops to be

moved at once and by not necessitating them to be

adjacent.

- It also improves vectorization, parallelism and register

reuse.

- By reducing the stride of an array based computation, it

improves locality.

Loop Fusion

- Under this transformation, the bodies of two contiguous

loops that have the same iteration space traversal are

combined into a single loop. It is also known as loop

fission which breaks a single loop into multiple loops

with same iteration space. [4][6]

- Reduces overhead of total loop by approx. factor of 2.

- Fusing two loops forms a single loop which comprises

more commands in the body and thus offers enhanced

instruction level parallelism.[12]

- Improves data locality.

Loop Blocking

- This transformation enhances the depth of a loop nest

with depth n by accumulating more loops to it.

- It is primarily used to improve data locality by enhancing

the reuse of data in cache.

Data Prefetching

- When the data are requested early, penalty of misses as

well as capacity misses can be hidden.

- It involves overhead.

- It allows the microprocessor to issue a data request

before the computation actually requires the data.[18]

I.b. Layout Optimizations [1]

- It talks about modifying the arrangement of data

assemblies and variables in memory.

- Effects like cache conflict misses and false sharing are

avoided

- It improves spatial locality of code.

Array Padding

- When two arrays are retrieved in an alternating way, the

data structures might end up being mapped to the same

cache lines, a significant number of conflict misses are

introduced.

- In case of cross interference and self-interference, two

often array references problems, this method helps to

reduce the number of conflict misses.

Group and transpose

- The spatial locality amid the components of different

arrays or other data structures can be improved with this

layout technique.

- Helps reduce the cross interference misses for large

arrays with alternate-access pattern.

- Best utilised with elements which are positioned

separately in memory but retrieved together.

Data Copying

- In this technique a non-contiguous data from a block is

copied into a contiguous area of memory. Making every

word of the block being mapped to its own cache

location.

- Is Guarantees high cache utilization and avoids self-

interference within the block.

- Copying operation increases the cost and often overrides

the benefits of it.

II. CACHE MAPPING TECHNIQUES

 Data from main memory could be mapped on to the cache

using different mapping techniques and then used by the

processor. Performance of processor speed are directly

impacted by these techniques.. This paper discusses different

cache mapping techniques and their effect on performance.

[8]

Direct Mapping

- Every cache block of data is plotted to a memory

address; it needs only one contrast to decide where to

place the data.

- Access time is fast

- More miss penalty

- Lowest hit rate

Fully Associative

- Data is stored randomly at any place in cache hence

requiring many comparators in order to check the tag

over every cache block.

- Expensive

- Hit rate is highest

- The process to decide which slot should be freed when

new data enters is a challenging.

- Complex than Direct Mapping (Since it requires

sophisticated search algorithms.)

N-way set-associative cache

- The cache is divided into sets and every memory address

maps to a particular set within the cache.

- Better hit ratios and less conflict misses leads to

additional cost.

- One way of improving Performance of direct mapped

cache can be improved bykeeping the balance of

accessing cache sets. This can be achieved by reducing

the size of decoder.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050569
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

904

CONCLUSION

In this paper we have compared various cache optimisation

techniques along with various mapping techniques. In this

paper we have compared techniques based on different

parameters such as cache misses, hit rates etc. We saw that

LRU performs better than Random Replacement in practice.

Different data access optimisation and layout optimisation

techniques has also been discussed. We saw that Full

Associative mapping technique has the highest hit rate in

comparison to the conventional direct mapping technique

with lowest hit rate. N-way set associative cache performs

better in some cases but at times the additional cost due to

better hit ratios override the benefits gained from this

technique.

REFERENCES

[1] Markus Kowarschik1 and Christian Wei, “An Overview of

Cache Optimization Techniques and Cache-Aware Numerical

Algorithms,” GI Dagstuhl Research Seminar on Algorithms for

Memory Hierarchies, Volume: 2625, Pages 5-12, January 2003.

[2] Pancham, Deepak Chaudhary and Ruchin Gupta, “Comparison

of Cache Page Replacement Techniques to Enhance Cache

Memory Performance,” International Journal of Computer

Applications (0975 – 8887) Volume 98– No.19, Pages 1-3, July

2014.

[3] Muhammad Waqas Ahmed, Munam Ali Shah, “Cache Memory:

An Analysis on Optimization Techniques,” International Journal

of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, Pages 1-5, March 2015.

[4] Moinuddin K. Qureshi, Yale N. Patt, “Utility-Based Cache

Partitioning: A Low-Overhead, High-Performance, Runtime

Mechanism to Partition Shared Caches,” The 39th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO’06), Pages 4-5, 2006.

[5] Sparsh Mittal, “A Survey of Cache Bypassing Techniques,”

Journal of Low Power Electronics and Applications, Page 8,

April 2016.

[6] Sa’ed Abed, Mohammad Al-Shayeji, Sari Sultan, Nesreen

Mohammad, “Hybrid approach based on partial tag comparison

technique and search methods to improve cache performance,”

IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 2, Pages 1-2,

August 2015.

[7] Sara Alouf, Nicaise Choungmo Fofack, Nedko Nedkov,

“Performance Models for Hierarchy of Caches: Application to

Modern DNS Caches,” ValueTools’13, Page 3, December 2015.

[8] Niklas Carlsson, Derek Eager, Ajay Gopinathan, Zongpeng Li,

“Caching and optimized request routing in cloud-based content

delivery systems.”

[9] P. R. Panda, F. Catthoor, N.D. Dutt, K. Danckaert, E.

Brockmeyer, C. Kulkarni, & A. Vandercappelle, P.G.

Kjeldsberg, “Data and Memory Optimization Techniques for

Embedded Systems,” ACM Transactions on Design Automation

of Electronic Systems, Vol. 6, No. 2, April 2001, Pages 149–

155.

[10] Cong Thuan Do, Hong-Jun Choi, Jong Myon Kim, Cheol Hong

Kim, “A new cache replacement algorithm for last-level caches

by exploiting tag-distance correlation of cache lines.”

[11] Monica S. Lam, Edward E. Rothberg and Michael E. Wolf,

“The Cache Performance and Optimizations of Blocked

Algorithms.”

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050569
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

905

