

Building a Smart City using LoRa Networks

Akshaykumar Athani

Department of Information Science
Gogte Institute Of Technology
Belagavi, India

Abhishek Joshi

Department of Information Science
Gogte Institute Of Technology
Belagavi, India

Abstract— Low Power Wide Area Networks (LPWAN) is ascending as another worldview, particularly in the field of Internet Of Things. This article manages strategies that can be utilized to create shrewd urban areas utilizing LoRa innovation. The primary point of this innovation is to beat the hindrances that we look by utilizing IOT in building up the brilliant urban communities. In remote sensor arranges there are vitality constrained gadgets, so the strategies to spare vitality have turned into an expressive research drift additionally this innovation think about is to beat the issues, for example, similarity, security, intricacy, network, inactivity which we look by utilizing IOT. Innovative organizations are embracing LoRa technique and innovation to reconsider their items and benefits and reclassify their associations with clients, workers. In this manner, we endeavor to execute LoRa in applications, for example, savvy structures, moistness and pollution detection and so forth.

Keywords—LoRa, IOT, LPWAN, Low Power, LoRaWAN

I. INTRODUCTION

It really is a domain that accumulates data from various gadgets like PCs, vehicles, cell phones, activity lights and nearly anything with a sensor and even applications like twitter, facebook and internet business sites. The development of the IoT has prompted the expanded size of the issues inalienable to the vitality confined hubs, data transfer capacity, inactivity in remote sensor systems. For better system execution, numerous looks into have been done to locate the ideal transmission control, data transfer capacity, idleness and range for every specific system hub. We attempt to execute arrange availability with little squandered power, expanded network, security therefore, expanding its lifetime [1]. The following of every hub is likewise extremely troublesome in IOT yet in addition the power required to transmitting with its most extreme power, low availability it is conceivable to reclassify availability, security, following of hubs and the vitality of hubs cooperatively, upgrading the topology of a Wireless sensor organize considering the neighbour hubs under specific criteria [2]. Late proposition, as Aziz et al. [3] present topology control procedures to broaden the battery lifetime and vitality productivity in Wireless sensor systems [4]. The new difficulties originate from keeping correspondence viable while diminishing vitality utilization expanded network, security and IoT heterogeneity can be considered as a besides open issue tended to at radio dimension [5] or gateway level [6]. Other aspects, such as latency, range coverage and bandwidth are also important in IoT to the Internet. For this required purpose, LoRa identifies that the end-devices that have limited energy and transmit few bytes every time [7].

History of IOT


In 1974, TCIP/IP structure that we know today had its birthplace. The primary site was distributed in 1991. By the year 1995, different sites and frameworks came were distributed on the web. In 1998, the genuine IOT was connected by Mark Weiser, by building up a drinking fountain. In 1999 the term IOT was begat by Kevin Ashton while he was working at Procter and Gamble. The term IOT did not come to spotlight for next 10 years however it was advanced before Ashton. [1]

Drawbacks in various wireless communication technologies for IOT:

Cell systems are generally mainstream for the fast information inclusion they offer. Rapid information is certainly not a noteworthy requirement for IoT applications. Gadgets utilizing cell organizes frequently have exceptionally poor battery life and there are a few holes in the system inclusion. ZigBee compose work systems are by and large generally utilized in home robotization. This is a result of the execution it offers at low to medium separations. In any case, with regards to long separations (couple of Kms), these flop unpleasantly. Bluetooth/BLE offers respectably great information rates however is enormously restricted by range. The range offered is essentially not adequate for long range IoT applications. The IEEE802.11 WLAN standard is without a doubt a standout amongst the most generally utilized norms among all the remote principles. This is exclusively a direct result of the high information rate and data transfer capacity it offers. Tragically, its range is exceptionally restricted and it is substantial on the battery. Gadgets utilizing Wi-Fi don't keep going long and should regularly be near the Wi-Fi passageway with the end goal to impart legitimately. Because of the high working frequencies (2.4 and 5 GHz), the waves don't enter through impediments effortlessly. With the end goal to defeat these disadvantages, LoRaWAN innovation is developing quickly and it will be embraced by IoT driven applications in numerous regions.

II. WHAT IS LORA?

LoRa is a new rising remote standard particularly it is intended for Low Power Wide Area Networks (LPWANs). It gives long range, low information rate, and vitality effective remote correspondence and is accepted to have high potential for acknowledgment of an extensive number of Internet of Things (IoT) applications. It is anything but difficult to connect to the current foundation that is it's good and offers an answer for serve battery-worked IoT applications.

The convention determination based over the LoRa innovation created by the LoRa Alliance is known as the LoRaWAN. It makes utilization of unlicensed radio range in the Industrial, Scientific and Medical (ISM) groups to empower low power, wide zone correspondence between remote sensors and doors associated with the system. This models-based way to deal with building a LPWAN takes into consideration snappy set up of open or private IoT arranges anyplace utilizing equipment and programming that is bi-directionally secure, interoperable and versatile, gives exact restriction, and works the manner in which you anticipate

Objectives:

- To show that due to its long range, low power and long battery life, it can be used in various applications.
- To show that how LoRa can overcome some of disadvantages that IOT has.
- To show that it costs less compared to the cost caused by using IOT.

Advantages of LoRaWAN

- It has very wide coverage range of about 15-20kms.
- The power consumed by this system is less and thus has a longer battery life.
- It makes use of 868 MHz/ 915 MHz ISM bands which is available worldwide.
- It has high capacity up to one million nodes and is easy to implement the architecture as shown in the Fig1.
- The physical layer uses robust CSS modulation. CSS stands for Chirp Spread Spectrum. It uses 6 SF (spreading factors) from SF 7 to 12. This delivers orthogonal transmissions at different data rates. Moreover, it gives preparing gain and thus transmitter yield power can be decreased with same RF interface spending plan and subsequently will build battery life. It provides secured and efficient network compared to IOT.

- LoRaWAN sensors would now be able to help following applications by utilizing Differential Time of Arrival systems to decide surmised area to the closest city square. This is called as the LoRa Geolocation which is a GPS free arrangement
- LoRaWAN supports three different types of devices called class-A, class-B and class-C. Table 1 shows the difference between these classes

Class A	Class B	Class C
Battery powered	Low Latency	No Latency
Server communicates with end device during predetermined response windows	Server can start transmission at settled interims	End device is constantly receiving
End device initiates communication	Extra receive window	Server can initiate transmission at any time

Table 1. Comparison of classes

Disadvantages of LoRaWAN

- It can be used to applications requiring low data rate.
- LoRaWAN range estimate is constrained dependent on parameter called as duty cycle. It is characterized as level of time amid which the channel can be possessed.

III. METHODOLOGY

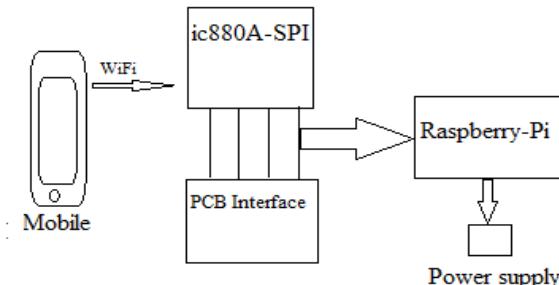


Fig 2. Block diagram

The ic880A-SPI is connected to the Raspberry-Pi through the PCB interface. The interface is used because the ic880A-SPI does not directly gets connected to Raspberry-Pi, as the standards vary. The jumper wires are the other options instead of PCB. The Raspberry-Pi will have an antenna for

frequency band. We configure the Raspberry-Pi and it can be used for implementation. To control the applications using mobile we can connect the LoRa module through WIFI. As shown in the diagram, the combination of ic880A-SPI, PCB interface, Raspberry-Pi forms the LoRa module. Various components can be connected to the LoRa module as per the requirements of the application.

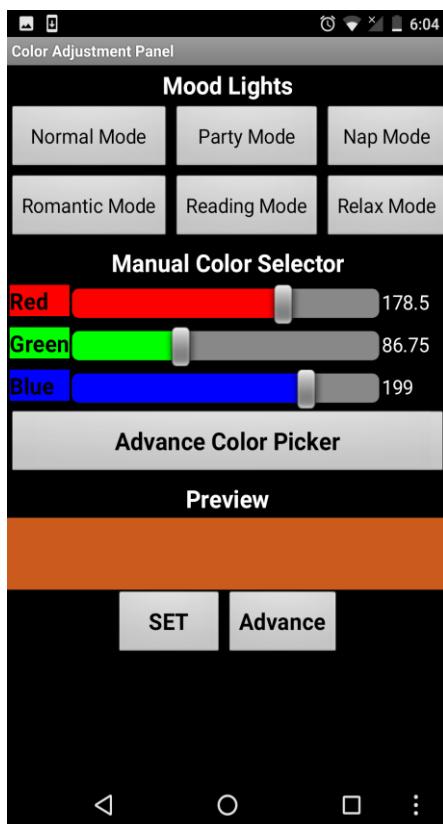


Fig 3. Screenshot of the app built

IV. APPLICATIONS OF LORA IN SMART CITIES

Smart city uses cutting edge technology to provide advanced applications and services to community.

Smart parking, efficient traffic management, humidity and pollution detection, smart buildings, vehicle (ambulances, public transport) tracking, street light control are the important applications we are going to focus upon. Connecting smart cities to government and private subsystems is the main aim.

1) Smart Parking

Space accessibility for stopping has been a noteworthy issue in the vast majority of the urban areas. LoRa monitors all the installed gadgets that are utilized to show the quantity of accessible openings in the stopping space. As network of these hubs is the real issue in a large portion of the urban communities, so LoRa goes about as favorable position in interfacing and monitoring every one of the hubs and furthermore it has leeway of security highlight. The security of hubs is a vital issue in IOT so LoRa defeats this issue and goes about as leverage to it.

2) Vehicle Tracking

As we know that LoRa Geolocation provides the location. We can use them to track the ambulances and public transport systems to know at what time it will be available. This is possible mainly because of the wide range coverage by LoRa and also the location tracking feature provided by it. This will help the people to choose some alternative transport system if the regular transport system is going to be late due to some reasons.

3) Traffic Control

The people in the metro cities waste most of their time due to heavy traffic. By the help of LoRa Geolocation one can know what's the traffic status in a particular area and can choose a different route if there is too much traffic. This will also be helpful to traffic police management to control the traffic. Monitoring the traffic will also help the ambulances to choose the appropriate route.

4) Smart Buildings

Home automation has been one of the trending technology. Smart Buildings/Homes will include control of lights, electronic appliances such as television, microwave, almost everything in the house through a simple mobile application. For Example, if a person forgets to switch off the lights or television while going to work, he can do it through his mobile without the need of coming back home and doing it. He can even monitor the amount of time for which the device has been used and even set timers for the duration which the light should be switched on. These applications will work well both for Industries and homes. The major problem with this application if done using IOT is compatibility and security which will be overcome when done using LoRa.

5) Smart Electric meters

The way we pay the electric bills need to be automated. Instead of the required official coming and producing the bill and we then paying bill, a smart method can be used to know the power consumed and the bill to be paid. We can design embedded smart meters which will send a notification regarding the payment of the bill and amount of power consumed. Thus, the user can be directly make the payment without the intervention of the official. The user can even check himself whenever he wants to know the amount of power consumed and what cost it has led to. GSM technology can also be used so that the user gets the message regarding the payment of the bill. The power consumption is shown in fig:2 For this each smart meter will be linked to a mobile number.

6) Street Light Monitoring

This is the application where wide range of coverage feature of LoRa is very helpful. We can design a mechanism such that the street lights are get switched on only when the vehicles are at particular distance from the street lights. Thus, it will overcome the power wastage caused by the normal street lights. The motion detection sensors could be used to detect the advancement of vehicles towards the required area. The hue of the street lights can also be controlled so that the

brightness of the lights could be increased at the time when there is rain or fog.

V. SWOT ANALYSIS AND PDCA ANALYSIS

Fig 4. SWOT Analysis

The above Fig.5 illustrates the SWOT Analysis of this proposed article.

SWOT Analysis: Strengths

- Secure direct connections
- Decade long battery life
- Broad range of applications
- Increased connectivity

SWOT Analysis: Weaknesses

- Low data rate up to 27kbps
- Applications which require low latency, LoRa is not a good choice

SWOT Analysis: Opportunities

- Security threats in IOT
- Connectivity issue of IOT
- Compatibility/Reliability in IOT
- Interoperability

SWOT Analysis: Threats

- Activation by Personalization (ABP) key provision
- Over-The-Air-Activation (OTAA) Key Provisioning
- LoRa Device key storage and management
- Weakness in key generation

VI. CONCLUSIONS AND FUTURE SCOPE

This article proposes about LoRaWAN convention the innovation in view of its engineering, battery lifetime, arrange, availability gadget classes, GPS following and security. It was watched that this convention demonstrated an expanded preferred standpoint of around 3 to 5-crease when contrasted with the other LPWAN advances in regards to control utilization for long range interchanges, availability, security, dormancy. Besides, LoRaWAN systems can be sent with an insignificant measure of foundation and with the accomplished limit. Before long, more doors can be added to lessen the measure of catching to different passages and subdivide the information rate, making the adaptable system in 6 to 8-crease of the base limit.

The future extension is to receive LoRa innovation in all the rustic and urban places as it beats the issues looked amid IOT and supplant all the availability conventions of IOT through the LoRa innovation.

VI. REFERENCES

- [1] R. Asorey-Cacheda, A. J. Garcia-Sanchez, F. Garcia-Sanchez, J. Garcia Haro, and F. J. Gonzalez-Castano, "On maximizing the lifetime of wireless sensor networks by optimally assigning energy supplies," *Sensors Journal*, Basel, Switzerland, vol. 13, pp. 10219–10244, 2013.
- [2] N. Li, J. Hou, and L. Sha, "Design and analysis of an mst-based topology control algorithm," *IEEE INFOCOM 2003*, San Francisco, USA, March 30-April 3, 2003, vol. 3, no. C, pp. 1702–1712.
- [3] A. A. Aziz, Y. A. Sekercioglu, P. Fitzpatrick, and M. Ivanovich, "A survey
- [4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," *Computer Networks*, vol. 38, no. 4, pp. 393–422, 2002.
- [5] M. Surligas, A. Makrogiannakis and S. Papadakis, "Empowering the IoT Heterogeneous Wireless Networking with Software Defined Radio," *2015 IEEE 81st Vehicular Technology Conference (VTC Spring)*, Glasgow, 2015, pp. 1-5.
- [6] E. Gioia, P. Passaro and M. Petracca, "AMBER: An advanced gateway solution to support heterogeneous IoT technologies," *24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)*, Split, 2016, pp. 1-
- [7] LoRa Alliance, "White Paper: A Technical Overview of Lora and Lorawan," The LoRa Alliance, San Ramon, USA, 2015.