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Abstract—Self-driving cars offer many advantages. They have
the ability to outperform human drivers in some circumstances
and can be safer, as computers don’t get tired nor lose focus. They
offer great economic advantages as they remove the need for
drivers. An end-to-end neural network to predict a car’s steering
actions on a highway is being analyzed. The inputs of the network
are images from a single car-mounted camera. Neural networks
have gained a lot of popularity from their successes in large-scale
image classification benchmarks. They have since been applied in
many different areas, often resulting in substantial
improvements. The performance of a self-driving car system is
crucial because errors can result in the death of a human being.
The first aspect is the format of the input data. The second aspect
is related to the temporal dependencies between consecutive
inputs. A stacked frames approach which increases the
performance of this network is being used. Training and testing
of data is done on real-life datasets and qualitatively shown the
importance of recovery cases as well as demonstrate that the
standard metrics that are used to evaluate networks that are
trained on datasets - accuracy, MCA, MAE, MSE do not
necessarily accurately reflect a system’s driving behaviour.

Keywords- Al Artificial Intelligence, GTAV Grand Theft Auto
Five, LSTM Long Short-Term Memory, MAE Mean Absolute
Error, MCA Mean Class Accuracy, MSE Mean Squared Error,
NN Neural Network

. INTRODUCTION

The idea of self-driving cars has been around for longer but
became a popular topic in the last few years, due to the
continuous increase in computational power and the
development of more intelligent algorithms. Lately, the control
of more and more functions is being handled by the car itself
and it is likely that the public will have access to fully self-
driving cars in the near future.

Such self-driving cars are advantageous because they have the
ability to outperform human drivers in some circumstances. A
few examples are that self-driving cars can be safer than
human-driven cars as computers don’t get tired nor lose focus.
Self-driving cars can reduce the amount of traffic jams by
driving at optimal speeds, keeping the right distance from the
previous car and not executing selfish manoeuvres. They can
be more ecological by avoiding unnecessary accelerations.
Perhaps the most persuading advantage is the economical gain:
it removes the need for drivers. This allows transport
companies to cut out driver costs and employees can work
while being driven around, to give some examples.

Of course, there are several challenges that need to be
overcome. Developing a self-driving car is a very complex and
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delicate process: the software is safety-critical and must be
fail-safe since a single error can result in the death of a human
being. It is difficult to guarantee the safety of a self-driving car,
especially when it’s running Al software which works in ways
that are not 100% clear. Even in a perfectly controlled situation
the car might face ethical choices. Another challenge is the
need for an adequate legal framework, which is currently
missing in most countries. These are just some examples of the
difficulties that can arise in the development of autonomous
vehicles.

In this thesis the author has developed an end-to-end Al
algorithm to control a self-driving car, using only the images
from a single car-mounted camera as input. To do so, he has
used a neural network that predicts the actions of the car.
Because this is a vast topic, he has focused mainly on a
simplified version of the problem. They only control the
steering of the car, while it is driving on a highway. This
system is illustrated in Figure 1.1.

Input:
Image

Output:
Steering Angle

Neural
Network

FIG 1.1 PROCESS FLOW OF THE SYSTEM.

There are good reasons to use neural networks for this.
Artificial intelligence is on the rise. The continuous increase in
hardware performance enables a broader public to use more
computationally intensive machine learning algorithms, such
as learning-based representations (deep learning) . This is
promising because Al can, with supervised or unsupervised
learning, learn by itself how to solve a problem. Compared to
human-made solutions, this allows to solve existing problems
in new ways or even allows to solve problems that were
previously unsolved. Neural networks has gained a lot of
popularity. They have since been applied in many different
areas, often resulting in substantial improvements. Examples
of this are Google Translate and Facebook using NNs to
improve their services. Since the author is mapping images to
steering actions, he uses convolutional neural networks. This
is often done as a "convolutional neural network is the most
popular algorithm for image cognition and video analysis".

Most state-of-the-art works use a mediated perception
approach, which is based on object detection to make driving
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decisions. A comparison between this approach and our end-
to-end approach can be found in chapter 2. Little research is
available about using end-to-end neural networks to directly
map images to driving actions. Therefore, to achieve a system
with a good performance, this research focuses on high-level
aspects of the system. Our results can then be used in further
research that focuses on smaller aspects, such as parameter
sweeps, to improve performance.

The first aspect of this research is the format of the input data
that is being fed to the network. The network is trained with
supervised learning: i.e. train it on input images together with
input steering wheel angle measurements. A look into the
influence of the quantization granularity of the steering
wheel’s angle measurements onto the system’s performance is
done. Colour scheme of the input images are also compared
based on different colour schemes and grayscale. This shows
us to what extent the system can make use of the information
that lies within the colour of the images.

The second aspect analyses the temporal information that can
be found in successive input images. This amount of
information could be significant because these images can be
seen as the subsequent frames of a video, so there is
information contained in such a sequence. Two techniques that
can give the network more capabilities to utilize this
information are being fertilized. The first technique consists of
concatenating multiple subsequent images and feeding them to
the network as a single input. This leads to an increased input
size, but the architecture of the network remains the same. The
second technique consists of inserting recurrent NN layers into
the architectures that is being used here. By definition,
recurrent layers can retain information between consecutive
inputs and thus utilize the temporal information.

The final aspect is the origin of the data. If a simulator is
sufficiently advanced and mimics the circumstances of the real
world well enough, it can be used to train the neural networks
and this would reduce the need for real-world data to train on.
In a simulator it is very simple and cheap to gather data and
the settings of this data are easy to change. This leads to bigger
and more diverse datasets, which can be used to train more
robust and better performing networks.

Il. RELATED WORK

The related work regarding self-driving cars can be divided
into two categories: mediated perception approaches and end-
to-end approaches. The work is positioned with respect to
these two categories.

A Mediated Perception Approaches

Most state-of-the art systems use a mediated perception
approach. These approaches rely on the detection and
classification of surrounding objects such as traffic signs, cars,
roads, buildings and pedestrians. They parse the entire scene
into an internal map of the surroundings and use this to make
driving decisions. A common practice in this type of
approaches is that objects and other scene elements that are
considered “relevant” need to be pre-defined. Another
common characteristic of mediated perception approaches is
their requirement of multiple sensors for reliable object

detection and classification. Examples of these sensors include
cameras, lasers and radar. Mediated approaches usually consist
of two steps:

i) Detection of “relevant” visual elements, and

ii) Decision making based on those elements.

This has both advantages and disadvantages. On the one hand,
a disadvantage is that it is possible that a designer fails to
identify certain relevant objects. Moreover, it is also possible
that useful information may get lost between the two steps. The
objects that are to be detected are usually hand-picked.
Because of this, certain detected objects may not be important
for the decision making while other meaningful objects may
not be detected and this may deteriorate the system’s
performance. On the other hand, an advantage is that this level
of indirection makes it easier for the network to focus on
certain details. For example, it is important to detect if a
pedestrian has the intention to cross the street and a mediated
perception approach can use a network that specializes in
detecting this. But for an end-to-end network, it may be
difficult to learn that it is important or to notice this type of
situations. Different from mediated perception approaches, we
focus on end-to-end systems where the network is given the
task of identifying which visual elements are important for the
task at hand. Therefore, no object or any other visual element
needs to be pre-defined or hand-picked.

B. End-to-end Approaches

In end-to-end systems, images are directly mapped to driving
decisions with the use of machine learning algorithms. The
system here uses this approach. Sometimes multiple cameras
are used to create recovery cases or a simple real-world
simulator. As said earlier, a disadvantage of end-to-end
approaches is that they lack a second processing step or
controller that makes decisions. Because of this, the system
does not keep track of the bigger picture. This makes it difficult
to teach the network certain specific things, for example to
abruptly avoid any children that run in front of the car. This is
difficult because unless the dataset is artificially created, there
are few such situations in the dataset while many different
situations should be present to create a robust system. Another
disadvantage is that the driving behaviour in the training data
has a direct influence as the network learns this imperfect
driving style, such as driving too close to the right lane
markings. If possible, the images and measurements should be
very carefully selected or corrected. This is less of a problem
for mediated perception approaches than it is for end-to-end
approaches.

C. Other Related Problems

An additional motivation for the use of end-to-end systems can
be found in related problems. Experiment on to flying a drone
through a room is considered [2]. They stress that using
pretrained networks is a good alternative to learning from
scratch for end-to-end networks. It saves training time and
requires less data because it is less prone to over fitting. They
also stress that training LSTM networks using a limited time
window produces better performance than when training it on
all previous input samples. Moreover, it has been clearly
indicated that there is a clear trend in which LSTM networks
outperform standard feed forward networks. Another
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observation is that recovery cases have a big impact on
performance. Following the same directions, it was
demonstrated that it is possible for networks trained on
simulation data to be generalized to the real world. Taking
these works into account, it is plausible to assume that many
observations and conclusions drawn from the autonomous
drone problem, such as the generalization of simulators and the
better performance of LSTM networks, also hold for the
problem. Finally, motivation for incorporating inter-frame
dependencies is found in language modeling. Just like different
words in a sentence are also related in order to convey
meaning, the input images are temporally dependent because
they are consecutive frames of a video. It has been proved that
LSTMs can outperform standard feed forward neural networks
on such tasks.

1. METHODOLOGY

The basic system set-up is as follows: images from the camera
are fed into the network and the network predicts the steering
angle from these image(s). During training, the steering wheel
angle measurements, i.e. annotations, are also fed to the
network. An illustration of our system is given in Fig 1.1

A. Network Architectures

Throughout the experiments, the neural networks varies in two
areas: their main architecture and their output layer. The main
architecture is a variation of either the NVIDIA , AlexNet or
VGG19 architecture. In the Alexnet architecture, the author
removed the dropout of the final two dense layers and reduced
their sizes to 500 and 200 neurons as this resulted in better
performance. The output layer of the network depends on its
type (regression or classification) and, for a classification
network, on the amount of classes. In this analysis the
experiments are conducted with both, classification and
regression, types. For the case of the classification type, the
steering angle measurements have been quantized into discrete
values, which represents the class labels. This quantization is
needed as input when training a classifier network and allows
to balance the data through sample weighting. This weighting
acts as a coefficient for the network’s learning rate for each
sample. A sample’s weight is directly related to the class that
it belongs to when quantized. These class weights are defined
as 1 divided by the amount of samples in the training set that
belong to that class, multiplied by a constant so that the
smallest class weight is equal to 1. Sample weighting is done
for both classifier networks and regression networks. Note that
for the latter, the class is used, to which the continuous value
would be mapped. This weighting is done to ensure that the
network is equally trained on all classes, in the hope that it
learns to handle all these different situations well. Otherwise,
the network might be biased toward a certain class.

B. Dataset

Training and evaluation of different networks is conducted on
the Comma.ai dataset, which consists of 7.25 hours of driving,
most of which is done on highways and during daytime.
Images are captured at 20 Hz which results in approximately
552,000 images. Discarded the few sequences that were made

during the night due to their high imbalance when compared
to those captured during daytime. In addition, in order to focus
on sequences with continuous / uninterrupted driving, the
author has limited himself to only considering images that
were captured while driving on highways. The remaining data
is then split into two mutually exclusive partitions; a training
set of 161,500 images and a validation set of 10,700 images.
This is done on a random per-file basis to ensure independence
between training and validation and to ensure that both sets
contain various traffic and weather conditions. These two
datasets are used in all conducted experiments.

C. Performance Metric

The performance of the networks is predicted using the
following performance metrics: accuracy, mean class accuracy
(MCA), mean absolute error (MAE) and mean squared error
(MSE) metrics. Conclusions based on the MSE metric, since it
allows to take the magnitude of the error into account and
assign a higher loss to larger errors than MAE does. This is
desirable since this may lead to better driving behaviour, as the
author assumes that it is easier for the system to recover from
many small mistakes than from a few big mistakes. A large
prediction error could result in a big sudden change of the
steering wheel angle. For example, larger errors create
dangerous situations as the car might swerve onto an adjacent
lane or go off-road.

For every metric individually, the best performance over all
epochs is chosen. These values are then compared between
networks and the best network is selected based on the MSE
metric. Note that the absolute performances are of relatively
low importance to and that more interest is on the relative
performances between the different network variants in the
experiments. After analyzing the high-level aspects of the
presented problem, better performance can later be achieved by
optimizing around the results of those experiments.

D. Input Data Format
1. Quantization granularity

In this first experiment, the author looks into the influence that
the specifications of the class quantization procedure have on
the system’s performance. These specifications consist of the
amount of classes and

FIG 3.1 MAPPING OF ANGLE MEASUREMENTS
FROM CONTINUOUS VALUES (OUTSIDE) TO
DISCRETE CLASS-LABELS (INSIDE) FOR 7 AND 17
CLASSES, RESPECTIVELY THE MAPPING FROM
THE INPUT RANGE TO THESE CLASSES.

comparison of classifier networks with varying degrees of
input measurement granularity is done. Also they are
compared to regression networks, which can be seen as having
infinitely many classes, although using a different loss
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function. It is plausible that the granularity has a significant
impact on the system’s performance. For metrics such as
global accuracy and mean class accuracy, this is obvious since
it is more difficult to choose the right class for a fine
quantization configuration that has a higher number of classes.
Coarse-grained classes however have a bigger quantization
error and this influences the magnitude of the error. For
metrics where the magnitude of the error is taken into account,
such as MSE and MAE, it is possible that configurations with
many fine-grained classes will perform better. Because
classifier networks are trained with categorical cross entropy
as loss function, they are expected to perform well when
compared using class accuracy as metric. On the other hand,
regression networks will probably outperform the classifier
networks on metrics that take the error distance into account,
as their loss function (e.g. MSE) also uses the error distance.
An experiment is being conducted by comparing a coarse-
grained quantization scheme with 7 classes and a fine-grained
scheme with 17 classes. Both classifier and regression
networks are done.

All of these networks are tested on the three architectures
previously explained and evaluated. The difference between 7
and 17 for regression is in the class weighting. Each sample is
given a weight based on their relative occurrences in 7 or 17
classes. (Similar to class weighting for the classification
networks.) Also, to be able to compare regression vs.
classification, the predicted regression outputs were
discretized into 7 and 17 classes to calculate MCA in the same
way this happened for the classification networks. The results
of this experiment are found in Figures 3.2 through 3.5.
Several observations can be made. First, it is logical that the
coarse-grained scheme scores better on the accuracy and MCA
metric. More importantly, we see that regression networks
significantly outperform classifier networks on the MAE and
MSE metrics, which have been discussed and concluded to be
the most important metrics.

This aligns with authors expectations, since regression
networks have a loss function that takes the error magnitude
into account. Finally, it’s been noticed that class weighting
does not have a significant impact on the performance of
regression networks. A possible explanation is that this is due
to their loss function, which also takes the error magnitude into
account. Samples which are less common generally will get a
higher loss, as their steering angle is mostly predicted a lot
worse than common samples.
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E. Incorporating Temporal Dependencies
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EXPERIMENT.

Image Colour Scheme:

Investigation on to what extent the system can exploit the
colour information that is present in the input images. It was
started off by comparing coloured images to grayscale ones.
The images from the dataset already have the RGB colour
scheme. Since the previous network proved regression
networks to outperform classifier networks in the problem at
hand, the author focused this experiment on regression
networks only.

The results from this experiment can be found in Figures

3.6 and 3.7. From these results, it can be observed that there is
no significant difference in performance between

networks that use coloured and grayscale images as input. This
suggests that, for the task at hand, the system was not able to
take much advantage of the colour information. Therefore, it
is not worthwhile to investigate this aspect any further and
compare different colour schemes.

IV. APPLICATION OF SIMULATED DATA

A last aspect investigated is the origin of the data. Up until
now, training and evaluation of the system was done using
real-world datasets. Here the author looks into the advantages
of a simulator over a real-world dataset and the uses of such a

simulator. Research on the impact of recovery cases on a
network’s performance and verify if the performance metrics
that are typically used are a good indicator of a network’s real
driving behaviour.

A simulator brings many advantages. Some examples are that
data gathering is easy, cheap and can be automated. Recovery
cases can easily be included in the dataset. Infrequently
occurring situations can be simulated and added to the dataset.
Driving conditions such as the weather and traffic can be set
as desired. Testing in simulators is safe, cheap and easy.

A Udacity Simulator

First the Udacity simulator is used to generate three datasets.
This simulator is very minimalistic and has no other cars,
pedestrians, or complex traffic situations. Only simple test-
tracks are implemented. The first dataset is gathered by
manually driving around the first test-track in the simulator.
The second dataset consists of recovery cases only. It is
gathered by diverging from the road, after which the recovery
to the middle of the road is recorded. This process is repeated
many times to get a sufficiently large dataset. A third
validation dataset is gathered by driving around the track in the
same way as with the first dataset. For the following
experiments, the NVIDIA architecture with a regression output
is used and no sample weighting is applied during training.

1. Training on Simulated Data

The first experiment tests the performance of a network trained
solely on the first dataset. After training, the best epoch is
selected based on MCA. The metrics are comparable to other
runs on the real dataset. As the confusion matrix has a dense
diagonal, good real-time driving performance is expected.
When driving in the simulator, the network starts off quite well
and stays nicely in the middle of the road. When it encounters
a more difficult sharp turn, the network slightly miss-predicts
some frames. The car deviates from the middle of the road and
is not able to recover from its miss-predictions, eventually
going completely off-track. Conclusion is made that despite
promising performance on the traditional metrics, the system
fails to keep the car on the road.

2. Recovery Cases

The second experiment evaluates the influence of adding
recovery data. First a new network is trained solely on the
recovery dataset. The confusion matrix together with its MCA.
As can be expected, the confusion matrix is focused on
steering sharply to the left or right. As it does not look very
promising and the MCA is very low, it is expected this network
will not perform very well during real-time driving. Despite
the low performance on these metrics, the network manages to
keep the car on track. The car however does not stay exactly in
the middle of the road. Instead, it diverts from the center of the
road, after which it recovers back towards the middle. It then
diverts towards the other side and back to the middle again,
and so on. The car thus wobbles softly during the straight parts
of the track, but handles the sharp turns surprisingly well. A
third network is trained on both datasets and has a confusion
matrix similar to the first network. In the simulator, it performs
quite well, driving smoothly in the middle of the lane on the
straight parts as well as in sharp turns. Hence it’s concluded
that recovery cases have a significant impact on the system’s
driving behaviour. By adding these recovery cases, the driving
performance of the system is improved while its performance
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on metrics deteriorates. This again suggests that the standard
metrics might not be a good tool to accurately assess a
network’s driving behaviour.

FIG 3.11 THE CONFUSION MATRIX
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B. GTA V Simulator

As an extension to the simplistic Udacity, GTA V is integrated
as a more realistic simulator platform. Next to being nearly
photo-realistic, GTA V provides a big driving playground of a
vast 126 km? with various lighting and weather conditions,
many different cars, and driver’s traffic scenes. A big dataset
with 42 hours of driving is available. This data also includes
recovery cases. This dataset is composed by 600 k images split
into 430k training images and 58k validation images. A
NVIDIA and an AlexNet regression network, as described
above, are trained on the dataset with sample weights based on
17 classes. The network shows performance metrics similar to
the NVIDIA regression network trained on the real-world
dataset. Evaluation of real-time driving performance on an
easy, nonurban road with clear lane markings is being done.

The network performs quite well and stays around the center
of the lane. When approaching a road with vague lane
markings, such as a small bridge, the car deviates towards the
opposite lane (Figure 3.16 middle). When it reaches a three-
way crossing (Figure 3.17 bottom), the network cannot decide
whether to go left or right, as it was equally trained on both
cases. Because of this, it drives straight and goes off-road. In
an urban environment, the network struggles with the same
problem, resulting in poor real-time performance.

Again, observations from this experiment suggest that current
metrics are not always representative for real-time driving
performance. In this regard, further research must be

conducted towards developing new performance metrics and
setting up automatic testing environments that are able to
match performance at training time and performance during
real-time driving. Some possible metrics could be distance
from the middle of the lane, smoothness of driving (penalizing
abrupt braking or turning), or a metric based on how long the
car stays on the road without accidents.

FIG 3.15 SEQUENCE: ROAD COVERED BY SHADOWS

4y

i

FIG 3.16 SEQUENCE: ROAD WITH VAGUELY MARKED LINES

FIG 3.17 SEQUENCE: THREE-WAY ROAD CROSSING.SOME VIDEO
SEQUENCES SHOWING THE EVALUATED MODEL DRIVING IN THE
GTAV SIMULATOR

V. CONCLUSION

In this paper, the author has analyzed an end-to-end neural
network to predict the steering actions of a car on a highway
from an input captured by a single car-mounted camera. This
analysis covered several high-level aspects of the neural
network. These aspects were the format of the input data, the
temporal dependencies between consecutive inputs and the
application of simulated data.

Regarding the first aspect, it was showed that the amount of
classes of a classifier does not seem to have a big influence on
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the performance and that regression networks outperform
classifier networks. This is likely due to the nature of their loss
function which is similar to the metrics used for evaluation,
takes the magnitude of a prediction error into account.
Moreover the author showed that, for the task at hand, there is
no major difference between networks that use coloured
images and ones that use grayscale images. Middle of the lane,
smoothness of driving (penalizing abrupt braking or turning),
or ametric based on how long the car stays on the road without
accidents. Regarding the second aspect, while the author was
unsuccessful in improving performance by implementing
LSTM layers, the stacked frames approach delivered good
results. By feeding the network 3 concatenated images, he got
a significant decrease of 30% in mean square error (MSE).
Further increasing the amount of concatenated images only
brought diminishing returns that did not outweigh the
drawbacks. Regarding the third aspect, the author was able to
gather simulated data and train networks that have a
performance comparable to the networks that they trained on

real-life datasets. They have qualitatively shown the
importance of recovery cases. They also qualitatively showed
that the standard metrics that are used to evaluate networks that
are trained on datasets accuracy, MCA, MAE, MSE - do not
necessarily reflect a system’s driving behaviour. Also its been
shown that a promising confusion matrix may result in poor
driving behaviour while a very ill-looking confusion matrix
may result in good driving behaviour. A structured framework
is needed that allows to quantitatively measure more
meaningful metrics.
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