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Abstract—Self-driving cars offer many advantages. They have 

the ability to outperform human drivers in some circumstances 

and can be safer, as computers don’t get tired nor lose focus. They 

offer great economic advantages as they remove the need for 

drivers. An end-to-end neural network to predict a car’s steering 

actions on a highway is being analyzed. The inputs of the network 

are images from a single car-mounted camera. Neural networks 

have gained a lot of popularity from their successes in large-scale 

image classification benchmarks. They have since been applied in 

many different areas, often resulting in substantial 

improvements. The performance of a self-driving car system is 

crucial because errors can result in the death of a human being. 

The first aspect is the format of the input data. The second aspect 

is related to the temporal dependencies between consecutive 

inputs. A stacked frames approach which increases the 

performance of this network is being used. Training and testing 

of data is done on real-life datasets and qualitatively shown the 

importance of recovery cases as well as demonstrate that the 

standard metrics that are used to evaluate networks that are 

trained on datasets - accuracy, MCA, MAE, MSE do not 

necessarily accurately reflect a system’s driving behaviour. 

Keywords- AI  Artificial Intelligence, GTA V  Grand Theft Auto 

Five, LSTM  Long Short-Term Memory, MAE  Mean Absolute 

Error, MCA  Mean Class Accuracy, MSE  Mean Squared Error, 

NN  Neural Network 

I. INTRODUCTION 

 

The idea of self-driving cars has been around for longer but 

became a popular topic in the last few years, due to the 

continuous increase in computational power and the 

development of more intelligent algorithms. Lately, the control 

of more and more functions is being handled by the car itself 

and it is likely that the public will have access to fully self-

driving cars in the near future. 

Such self-driving cars are advantageous because they have the 

ability to outperform human drivers in some circumstances. A 

few examples are that self-driving cars can be safer than 

human-driven cars as computers don’t get tired nor lose focus. 

Self-driving cars can reduce the amount of traffic jams by 

driving at optimal speeds, keeping the right distance from the 

previous car and not executing selfish manoeuvres. They can 

be more ecological by avoiding unnecessary accelerations. 

Perhaps the most persuading advantage is the economical gain: 

it removes the need for drivers. This allows transport 

companies to cut out driver costs and employees can work 

while being driven around, to give some examples. 

Of course, there are several challenges that need to be 

overcome. Developing a self-driving car is a very complex and 

delicate process: the software is safety-critical and must be 

fail-safe since a single error can result in the death of a human 

being. It is difficult to guarantee the safety of a self-driving car, 

especially when it’s running AI software which works in ways 

that are not 100% clear. Even in a perfectly controlled situation 

the car might face ethical choices. Another challenge is the 

need for an adequate legal framework, which is currently 

missing in most countries. These are just some examples of the 

difficulties that can arise in the development of autonomous 

vehicles. 

In this thesis the author has developed an end-to-end AI 

algorithm to control a self-driving car, using only the images 

from a single car-mounted camera as input. To do so, he has  

used a neural network that predicts the actions of the car. 

Because this is a vast topic, he has focused mainly on a 

simplified version of the problem. They only control the 

steering of the car, while it is driving on a highway. This 

system is illustrated in Figure 1.1. 

 

           Input:       Output: 
           Image      Steering Angle                                   
  

 
   

FIG 1.1 PROCESS FLOW OF THE SYSTEM. 

 

There are good reasons to use neural networks for this. 

Artificial intelligence is on the rise. The continuous increase in 

hardware performance enables a broader public to use more 

computationally intensive machine learning algorithms, such 

as learning-based representations (deep learning) . This is 

promising because AI can, with supervised or unsupervised 

learning, learn by itself how to solve a problem. Compared to 

human-made solutions, this allows to solve existing problems 

in new ways or even allows to solve problems that were 

previously unsolved. Neural networks has gained a lot of 

popularity. They have since been applied in many different 

areas, often resulting in substantial improvements. Examples 

of this are Google Translate and Facebook using NNs to 

improve their services. Since the author is mapping images to 

steering actions, he uses convolutional neural networks. This 

is often done as a "convolutional neural network is the most 

popular algorithm for image cognition and video analysis". 

Most state-of-the-art works use a mediated perception 

approach, which is based on object detection to make driving 
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decisions. A comparison between this approach and our end-

to-end approach can be found in chapter 2. Little research is 

available about using end-to-end neural networks to directly 

map images to driving actions. Therefore, to achieve a system 

with a good performance, this research focuses on high-level 

aspects of the system. Our results can then be used in further 

research that focuses on smaller aspects, such as parameter 

sweeps, to improve performance. 

The first aspect of this research is the format of the input data 

that is being fed to the network. The network is trained with 

supervised learning: i.e. train it on input images together with 

input steering wheel angle measurements. A look into the 

influence of the quantization granularity of the steering 

wheel’s angle measurements onto the system’s performance is 

done. Colour scheme of the input images are also compared 

based on different colour schemes and grayscale. This shows 

us to what extent the system can make use of the information 

that lies within the colour of the images. 

The second aspect analyses the temporal information that can 

be found in successive input images. This amount of 

information could be significant because these images can be 

seen as the subsequent frames of a video, so there is 

information contained in such a sequence. Two techniques that 

can give the network more capabilities to utilize this 

information are being fertilized. The first technique consists of 

concatenating multiple subsequent images and feeding them to 

the network as a single input. This leads to an increased input 

size, but the architecture of the network remains the same. The 

second technique consists of inserting recurrent NN layers into 

the architectures that is being used here. By definition, 

recurrent layers can retain information between consecutive 

inputs and thus utilize the temporal information. 

The final aspect is the origin of the data. If a simulator is 

sufficiently advanced and mimics the circumstances of the real 

world well enough, it can be used to train the neural networks 

and this would reduce the need for real-world data to train on. 

In a simulator it is very simple and cheap to gather data and 

the settings of this data are easy to change. This leads to bigger 

and more diverse datasets, which can be used to train more 

robust and better performing networks. 

 

II. RELATED WORK  

 

The related work regarding self-driving cars can be divided 

into two categories: mediated perception approaches and end-

to-end approaches. The work is positioned with respect to 

these two categories. 

 

A. Mediated Perception Approaches 

Most state-of-the art systems use a mediated perception 

approach. These approaches rely on the detection and 

classification of surrounding objects such as traffic signs, cars, 

roads, buildings and pedestrians. They parse the entire scene 

into an internal map of the surroundings and use this to make 

driving decisions. A common practice in this type of 

approaches is that objects and other scene elements that are 

considered “relevant” need to be pre-defined. Another 

common characteristic of mediated perception approaches is 

their requirement of multiple sensors for reliable object 

detection and classification. Examples of these sensors include 

cameras, lasers and radar. Mediated approaches usually consist 

of two steps: 

i) Detection of “relevant” visual elements, and  

ii) Decision making based on those elements.  

This has both advantages and disadvantages. On the one hand, 

a disadvantage is that it is possible that a designer fails to 

identify certain relevant objects. Moreover, it is also possible 

that useful information may get lost between the two steps. The 

objects that are to be detected are usually hand-picked. 

Because of this, certain detected objects may not be important 

for the decision making while other meaningful objects may 

not be detected and this may deteriorate the system’s 

performance. On the other hand, an advantage is that this level 

of indirection makes it easier for the network to focus on 

certain details. For example, it is important to detect if a 

pedestrian has the intention to cross the street and a mediated 

perception approach can use a network that specializes in 

detecting this. But for an end-to-end network, it may be 

difficult to learn that it is important or to notice this type of 

situations. Different from mediated perception approaches, we 

focus on end-to-end systems where the network is given the 

task of identifying which visual elements are important for the 

task at hand. Therefore, no object or any other visual element 

needs to be pre-defined or hand-picked. 

 

B. End-to-end Approaches 

In end-to-end systems, images are directly mapped to driving 

decisions with the use of machine learning algorithms. The 

system here uses this approach. Sometimes multiple cameras 

are used to create recovery cases or a simple real-world 

simulator. As said earlier, a disadvantage of end-to-end 

approaches is that they lack a second processing step or 

controller that makes decisions. Because of this, the system 

does not keep track of the bigger picture. This makes it difficult 

to teach the network certain specific things, for example to 

abruptly avoid any children that run in front of the car. This is 

difficult because unless the dataset is artificially created, there 

are few such situations in the dataset while many different 

situations should be present to create a robust system. Another 

disadvantage is that the driving behaviour in the training data 

has a direct influence as the network learns this imperfect 

driving style, such as driving too close to the right lane 

markings. If possible, the images and measurements should be 

very carefully selected or corrected. This is less of a problem 

for mediated perception approaches than it is for end-to-end 

approaches. 

 

C. Other Related Problems 

An additional motivation for the use of end-to-end systems can 

be found in related problems. Experiment on to flying a drone 

through a room is considered [2]. They stress that using 

pretrained networks is a good alternative to learning from 

scratch for end-to-end networks. It saves training time and 

requires less data because it is less prone to over fitting. They 

also stress that training LSTM networks using a limited time 

window produces better performance than when training it on 

all previous input samples. Moreover, it has been clearly 

indicated that there is a clear trend in which LSTM networks 

outperform standard feed forward networks. Another 
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observation is that recovery cases have a big impact on 

performance. Following the same directions, it was 

demonstrated that it is possible for networks trained on 

simulation data to be generalized to the real world. Taking 

these works into account, it is plausible to assume that many 

observations and conclusions drawn from the autonomous 

drone problem, such as the generalization of simulators and the 

better performance of LSTM networks, also hold for the 

problem. Finally, motivation for incorporating inter-frame 

dependencies is found in language modeling. Just like different 

words in a sentence are also related in order to convey 

meaning, the input images are temporally dependent because 

they are consecutive frames of a video. It has been proved that 

LSTMs can outperform standard feed forward neural networks 

on such tasks. 

 

III. METHODOLOGY 

 

The basic system set-up is as follows: images from the camera 

are fed into the network and the network predicts the steering 

angle from these image(s). During training, the steering wheel 

angle measurements, i.e. annotations, are also fed to the 

network. An illustration of our system is given in Fig 1.1 

 

A. Network Architectures 

Throughout the experiments, the neural networks varies in two 

areas: their main architecture and their output layer. The main 

architecture is a variation of either the NVIDIA , AlexNet  or 

VGG19 architecture. In the Alexnet architecture, the author 

removed the dropout of the final two dense layers and reduced 

their sizes to 500 and 200 neurons as this resulted in better 

performance. The output layer of the network depends on its 

type (regression or classification) and, for a classification 

network, on the amount of classes. In this analysis the 

experiments are conducted with both, classification and 

regression, types. For the case of the classification type, the 

steering angle measurements have been quantized into discrete 

values, which represents the class labels. This quantization is 

needed as input when training a classifier network and allows 

to balance the data through sample weighting. This weighting 

acts as a coefficient for the network’s learning rate for each 

sample. A sample’s weight is directly related to the class that 

it belongs to when quantized. These class weights are defined 

as 1 divided by the amount of samples in the training set that 

belong to that class, multiplied by a constant so that the 

smallest class weight is equal to 1. Sample weighting is done 

for both classifier networks and regression networks. Note that 

for the latter, the class is used, to which the continuous value 

would be mapped. This weighting is done to ensure that the 

network is equally trained on all classes, in the hope that it 

learns to handle all these different situations well. Otherwise, 

the network might be biased toward a certain class. 

 

B. Dataset 

Training and evaluation of different networks is conducted on 

the Comma.ai dataset, which consists of 7.25 hours of driving, 

most of which is done on highways and during daytime. 

Images are captured at 20 Hz which results in approximately 

552,000 images. Discarded the few sequences that were made 

during the night due to their high imbalance when compared 

to those captured during daytime. In addition, in order to focus 

on sequences with continuous / uninterrupted driving, the 

author has limited himself to only considering images that 

were captured while driving on highways. The remaining data 

is then split into two mutually exclusive partitions: a training 

set of 161,500 images and a validation set of 10,700 images. 

This is done on a random per-file basis to ensure independence 

between training and validation and to ensure that both sets 

contain various traffic and weather conditions. These two 

datasets are used in all conducted experiments. 

 

C. Performance Metric 

The performance of the networks is predicted using the 
following performance metrics: accuracy, mean class accuracy 
(MCA), mean absolute error (MAE) and mean squared error 
(MSE) metrics. Conclusions based on the MSE metric, since it 
allows to take the magnitude of the error into account and 
assign a higher loss to larger errors than MAE does. This is 
desirable since this may lead to better driving behaviour, as the 
author assumes that it is easier for the system to recover from 
many small mistakes than from a few big mistakes. A large 
prediction error could result in a big sudden change of the 
steering wheel angle. For example, larger errors create 
dangerous situations as the car might swerve onto an adjacent 
lane or go off-road. 

For every metric individually, the best performance over all 
epochs is chosen. These values are then compared between 
networks and the best network is selected based on the MSE 
metric. Note that the absolute performances are of relatively 
low importance to  and that more interest is on the relative 
performances between the different network variants in the 
experiments. After analyzing the high-level aspects of the 
presented problem, better performance can later be achieved by 
optimizing around the results of those experiments. 

D. Input Data Format 

1. Quantization granularity 

 

In this first experiment, the author looks into the influence that 

the specifications of the class quantization procedure have on 

the system’s performance. These specifications consist of the 

amount of classes and 

 

 
  

FIG 3.1 MAPPING OF ANGLE MEASUREMENTS 

FROM CONTINUOUS VALUES (OUTSIDE) TO 

DISCRETE CLASS-LABELS (INSIDE) FOR 7 AND 17 

CLASSES, RESPECTIVELY THE MAPPING FROM 

THE INPUT RANGE TO THESE CLASSES. 

 

comparison of classifier networks with varying degrees of 

input measurement granularity is done. Also they are 

compared to regression networks, which can be seen as having 

infinitely many classes, although using a different loss 
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function. It is plausible that the granularity has a significant 

impact on the system’s performance. For metrics such as 

global accuracy and mean class accuracy, this is obvious since 

it is more difficult to choose the right class for a fine 

quantization configuration that has a higher number of classes. 

Coarse-grained classes however have a bigger quantization 

error and this influences the magnitude of the error. For 

metrics where the magnitude of the error is taken into account, 

such as MSE and MAE, it is possible that configurations with 

many fine-grained classes will perform better. Because 

classifier networks are trained with categorical cross entropy 

as loss function, they are expected to perform well when 

compared using class accuracy as metric. On the other hand, 

regression networks will probably outperform the classifier 

networks on metrics that take the error distance into account, 

as their loss function (e.g. MSE) also uses the error distance. 

An experiment is being conducted by comparing a coarse-

grained quantization scheme with 7 classes and a fine-grained 

scheme with 17 classes. Both classifier and regression 

networks are done. 

All of these networks are tested on the three architectures 

previously explained and evaluated. The difference between 7 

and 17 for regression is in the class weighting. Each sample is 

given a weight based on their relative occurrences in 7 or 17 

classes. (Similar to class weighting for the classification 

networks.) Also, to be able to compare regression vs. 

classification, the predicted regression outputs were 

discretized into 7 and 17 classes to calculate MCA in the same 

way this happened for the classification networks. The results 

of this experiment are found in Figures 3.2 through 3.5. 

Several observations can be made. First, it is logical that the 

coarse-grained scheme scores better on the accuracy and MCA 

metric. More importantly, we see that regression networks 

significantly outperform classifier networks on the MAE and 

MSE metrics, which have been discussed and concluded to be 

the most important metrics. 

This aligns with authors expectations, since regression 

networks have a loss function that takes the error magnitude 

into account. Finally, it’s been noticed that class weighting 

does not have a significant impact on the performance of 

regression networks. A possible explanation is that this is due 

to their loss function, which also takes the error magnitude into 

account. Samples which are less common generally will get a 

higher loss, as their steering angle is mostly predicted a lot 

worse than common samples. 

 

  

FIG 3.2 CLASSIFICATION ACCURACY OF THE GRANULARITY 
EXPERIMENT. 

 

  
 

FIG 3.3 MEAN CLASS ACCURACY (MCA) OF THE GRANULARITY 
EXPERIMENT. 

  

 
 

FIG 3.4 MEAN SQUARED ERROR (MSE) OF THE GRANULARITY 
EXPERIMENT. 

  

 

FIG 3.5 MEAN ABSOLUTE ERROR (MAE) OF THE GRANULARITY 

EXPERIMENT. 

  

 

FIG 3.6 MEAN SQUARE ERROR (MSE) OF THE COLOUR 
EXPERIMENT. 

 

 

  

FIG 3.7  MEAN ABSOLUTE ERROR (MAE) OF THE COLOUR 
EXPERIMENT. 
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E.  Incorporating Temporal Dependencies 

  

FIG 3.8 MEAN CLASS ACCURACY (MCA) OF THE STACKING 

EXPERIMENT. 

 

 

FIG 3.9 MEAN SQUARE ERROR (MSE) OF THE STACKING 

EXPERIMENT. 

 

  

FIG 3.10 MEAN ABSOLUTE ERROR (MAE) OF THE STACKING 
EXPERIMENT. 

 

 

Image Colour Scheme: 

 

 Investigation on to what extent the system can exploit          the 

colour information that is present in the input images. It was 

started off by comparing coloured images to grayscale ones. 

The images from the dataset already have the RGB colour 

scheme. Since the previous network proved regression 

networks to outperform classifier networks in the problem at 

hand, the author focused this experiment on regression 

networks only. 

The results from this experiment can be found in Figures 

3.6 and 3.7. From these results, it can be observed that there is 

no significant difference in performance between 

networks that use coloured and grayscale images as input. This 

suggests that, for the task at hand, the system was not able to 

take much advantage of the colour information. Therefore, it 

is not worthwhile to investigate this aspect any further and 

compare different colour schemes. 

 

IV. APPLICATION OF SIMULATED DATA 

 

A last aspect investigated is the origin of the data. Up until 

now, training and evaluation of the system was done using 

real-world datasets. Here the author looks into the advantages 

of a simulator over a real-world dataset and the uses of such a 

simulator. Research on the impact of recovery cases on a 

network’s performance and verify if the performance metrics 

that are typically used are a good indicator of a network’s real 

driving behaviour. 

A simulator brings many advantages. Some examples are that 

data gathering is easy, cheap and can be automated. Recovery 

cases can easily be included in the dataset. Infrequently 

occurring situations can be simulated and added to the dataset. 

Driving conditions such as the weather and traffic can be set 

as desired. Testing in simulators is safe, cheap and easy. 

A. Udacity Simulator 

First the Udacity simulator is used to generate three datasets. 

This simulator is very minimalistic and has no other cars, 

pedestrians, or complex traffic situations. Only simple test-

tracks are implemented. The first dataset is gathered by 

manually driving around the first test-track in the simulator. 

The second dataset consists of recovery cases only. It is 

gathered by diverging from the road, after which the recovery 

to the middle of the road is recorded. This process is repeated 

many times to get a sufficiently large dataset. A third 

validation dataset is gathered by driving around the track in the 

same way as with the first dataset. For the following 

experiments, the NVIDIA architecture with a regression output 

is used and no sample weighting is applied during training. 

1. Training on Simulated Data 

The first experiment tests the performance of a network trained 

solely on the first dataset. After training, the best epoch is 

selected based on MCA. The metrics are comparable to other 

runs on the real dataset. As the confusion matrix has a dense 

diagonal, good real-time driving performance is expected. 

When driving in the simulator, the network starts off quite well 

and stays nicely in the middle of the road. When it encounters 

a more difficult sharp turn, the network slightly miss-predicts 

some frames. The car deviates from the middle of the road and 

is not able to recover from its miss-predictions, eventually 

going completely off-track. Conclusion is made that despite 

promising performance on the traditional metrics, the system 

fails to keep the car on the road. 

2. Recovery Cases 

The second experiment evaluates the influence of adding 

recovery data. First a new network is trained solely on the 

recovery dataset. The confusion matrix together with its MCA. 

As can be expected, the confusion matrix is focused on 

steering sharply to the left or right. As it does not look very 

promising and the MCA is very low, it is expected this network 

will not perform very well during real-time driving. Despite 

the low performance on these metrics, the network manages to 

keep the car on track. The car however does not stay exactly in 

the middle of the road. Instead, it diverts from the center of the 

road, after which it recovers back towards the middle. It then 

diverts towards the other side and back to the middle again, 

and so on. The car thus wobbles softly during the straight parts 

of the track, but handles the sharp turns surprisingly well. A 

third network is trained on both datasets and has a confusion 

matrix similar to the first network. In the simulator, it performs 

quite well, driving smoothly in the middle of the lane on the 

straight parts as well as in sharp turns. Hence it’s concluded 

that recovery cases have a significant impact on the system’s 

driving behaviour. By adding these recovery cases, the driving 

performance of the system is improved while its performance 
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on metrics deteriorates. This again suggests that the standard 

metrics might not be a good tool to accurately assess a 

network’s driving behaviour.  

 

  
 

FIG 3.11 THE CONFUSION MATRIX 

  

 
 

FIG 3.12 CONFUSION MATRIX FOR NN TRAINED WITHOUT 
RECOVERY DATA .MEAN CLASS ACCURACY (MCA) IS 32.5% 

 

  
 

FIG 3.13 CONFUSION MATRIX FOR NN TRAINED WITH ONLY 

RECOVERY DATA. MEAN CLASS ACCURACY (MCA) IS 9.9%. 
 

B. GTA V Simulator 

As an extension to the simplistic Udacity, GTA V is integrated 

as a more realistic simulator platform. Next to being nearly 

photo-realistic, GTA V provides a big driving playground of a 

vast 126 km2 with various lighting and weather conditions, 

many different cars, and driver’s traffic scenes. A big dataset 

with 42 hours of driving is available. This data also includes 

recovery cases. This dataset is composed by 600 k images split 

into 430k training images and 58k validation images. A 

NVIDIA and an AlexNet regression network, as described 

above, are trained on the dataset with sample weights based on 

17 classes. The network shows performance metrics similar to 

the NVIDIA regression network trained on the real-world 

dataset. Evaluation of real-time driving performance on an 

easy, nonurban road with clear lane markings is being done. 

The network performs quite well and stays around the center 

of the lane. When approaching a road with vague lane 

markings, such as a small bridge, the car deviates towards the 

opposite lane (Figure 3.16 middle). When it reaches a three-

way crossing (Figure 3.17 bottom), the network cannot decide 

whether to go left or right, as it was equally trained on both 

cases. Because of this, it drives straight and goes off-road. In 

an urban environment, the network struggles with the same 

problem, resulting in poor real-time performance. 

Again, observations from this experiment suggest that current 

metrics are not always representative for real-time driving 

performance. In this regard, further research must be 

conducted towards developing new performance metrics and 

setting up automatic testing environments that are able to 

match performance at training time and performance during 

real-time driving. Some possible metrics could be distance 

from the middle of the lane, smoothness of driving (penalizing 

abrupt braking or turning), or a metric based on how long the 

car stays on the road without accidents. 

  

 
 

FIG 3.15 SEQUENCE: ROAD COVERED BY SHADOWS 

 

  
 

FIG 3.16 SEQUENCE: ROAD WITH VAGUELY MARKED LINES 
 

  
 

FIG 3.17 SEQUENCE: THREE-WAY ROAD CROSSING.SOME VIDEO 

SEQUENCES SHOWING THE EVALUATED MODEL DRIVING IN THE 

GTA V SIMULATOR 

 

V. CONCLUSION 

 

In this paper, the author has analyzed an end-to-end neural 

network to predict the steering actions of a car on a highway 

from an input captured by a single car-mounted camera. This 

analysis covered several high-level aspects of the neural 

network. These aspects were the format of the input data, the 

temporal dependencies between consecutive inputs and the 

application of simulated data. 

Regarding the first aspect, it was showed that the amount of 

classes of a classifier does not seem to have a big influence on 
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the performance and that regression networks outperform 

classifier networks. This is likely due to the nature of their loss 

function which is similar to the metrics used for evaluation, 

takes the magnitude of a prediction error into account. 

Moreover the author showed that, for the task at hand, there is 

no major difference between networks that use coloured 

images and ones that use grayscale images. Middle of the lane, 

smoothness of driving (penalizing abrupt braking or turning), 

or a metric based on how long the car stays on the road without 

accidents. Regarding the second aspect, while the author was 

unsuccessful in improving performance by implementing 

LSTM layers, the stacked frames approach delivered good 

results. By feeding the network 3 concatenated images, he got 

a significant decrease of 30% in mean square error (MSE). 

Further increasing the amount of concatenated images only 

brought diminishing returns that did not outweigh the 

drawbacks. Regarding the third aspect, the author was able to 

gather simulated data and train networks that have a 

performance comparable to the networks that they trained on 

real-life datasets. They have qualitatively shown the 

importance of recovery cases. They also qualitatively showed 

that the standard metrics that are used to evaluate networks that 

are trained on datasets accuracy, MCA, MAE, MSE - do not 

necessarily reflect a system’s driving behaviour. Also its been  

shown that a promising confusion matrix may result in poor 

driving behaviour while a very ill-looking confusion matrix 

may result in good driving behaviour. A structured framework 

is needed that allows to quantitatively measure more 

meaningful metrics. 

 

REFERENCES 

 
[1] From Pixels to Actions: Learning to Drive a Car with Deep Neural 

Networks 2018 IEEE Winter Conference on Applications of Computer 
Vision. 

[2] K. Kelchtermans and T. Tuytelaars. How hard is it to cross the room?–
training (recurrent) neural networks to steer a uav.arXiv preprint 
arXiv:1702.07600, 2017.

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTESIT - 2019 Conference Proceedings

Volume 7, Issue 08

Special Issue - 2019

7

www.ijert.org

