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Abstract—3D Reconstruction has been a field of interest for
multiple disciplines, and in the past decade, many researchers
have devoted their studies to improve on state-of-art automated
methods used for 3D Reconstruction. 3D models have their
application in solving numerous visualization problems and a
large number of undertakings beyond visualization. In this
paper, we conduct a short survey of research in 3D
Reconstruction of Satellite data, and finally, we propose a
workflow that will provide a direction for future researchers in
generation 3D models of Satellite Data using Deep learning
techniques. The workflow includes the use of CNN for object
segmentation and use of GAN for DSM or height map
construction and 3D model generation
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I. INTRODUCTION

3D City models with buildings being its prominent feature
have vast use cases[1] such as Visibility Analysis, Estimation
of Shadows Cast by Urban Features, Visualization for
Navigation, Urban Planning, Forecasting Seismic Damage,
Flooding, Change Detection, Forest Management,
Archeology, etc. in which visualization plays an important
role makes 3D reconstruction of city models an essential
Task.

Since the increased enhancement in remote sensing
techniques[21] the availability of High-quality satellite and
aerial images has increased. The intense research in remote
sensing using Deep learning has automated [23] the process
as well as retained if not further increased the quality of the
results. The state-of-the-art methods for remote sensing and
photogrammetry were semi-automated and thus required
manual human intervention.

The general workflow observed in many of the previous
research for 3D city model generation includes 1)Data
Acquisition 2) Height Map Construction 3) Object Detection
4) 3D reconstruction 5) LOD enhancement. Most of the
stages of development rely heavily on algorithms and most
certainly require human intervention. There also has been
research in with 3D models can be generated without the
construction of DSMs using shallow classifiers and predictors
[11]. However, most of the 3D reconstruction pipelines
heavily rely on Height maps to achieve higher accuracy
[5,6,12,14,17,28].
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The Data Acquisition stage usually depends on use-cases
which are the following 1)Consistent with satellite data 2)
Consistent with urban scenes.

The data used in the first type is for sure High spectral
Satellite or Aerial Images. The priority here is to find out
ways to enhance the workflow and determine how the
availability of satellite images can also facilitate the
generation of High-quality 3D models. Here Data acquisition
is usually followed by DSM construction and then 3D city
modelling.

The latter deals with generating high-quality 3D urban
scenes. thus, the data along with aerial images use street
photographs to get the facades of the buildings and other
street-level data. Here the priority is virtual city modelling for
game simulations or other such use-cases where high-quality
city scenes are used. In such cases, 2D height maps are
usually constructed of the target city as the second stage of
the work-flow and then the further 3D model generation is
done

The primary focus in both of these use cases is to make the
process less reliable on humans and also be less
computationally expensive. The development of deep
learning techniques using this method has an advantage over
the others in terms of quality and efficiency. Each of these
stages in the workflow has been more or less enhanced using
deep learning.

In this paper, we review each of the above-mentioned stages
and how previous works in deep learning have contributed to
their development. We primarily focus on remote sensing and
usage of Satellite and Aerial Images. However, at the end of
section 2, we mention a few of the usage of other kinds of
data for 3D city modelling. We have not gone through every
possible research paper instead, we try to provide an
overview of the research done in each of the stages using
deep learning techniques. Section Il reviews previous work
done in each of the stages and section Il proposes a general
work-flow that can be adopted for further research.
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Il. LITERATURE REVIEW

We approach this section-wise. Section 1 deals with the
initial stage of data acquisition through remote sensing.
Section 2 deals with techniques used for the development of
Height maps Or DSMs. Section 3 inquires methods
developed for large-scale Semantic labeling. Section 4
provides an overview regarding different approaches used to
combine data of height maps and scene segmentation and
finally section 5 focuses on methods developed for LOD
enhancement and facade reconstruction.

Section 1. Remote Sensing

Satellite and Aerial photogrammetry image acquisition is
standard and is available as a huge block or in the form of a
few Chips or Tiles of few kilometers having multi spectral
channels and high resolution.[30] demonstrates The Digital
Imaging and Remote Sensing Image Image Generation

(DIRSIG) model for large-scale chips generation for Training.

Few overlaps are available to provide accuracy. Satellite
Images are now largely available due to Earth engines and
satellites like IKONOS but can be expensive. The Aerial
Images are largely acquired using UAV- based
photogrammetry [10].

The challenges to use these data in the Al pipeline following
acquisition include :

1. High resolution.

2. Dozens of other spectral channels including RGB.

3. Geo referencing.

4. Conversion into Nadir images.

This data is available as metadata of the Satellite images in
the most common GeoTiff format.

Deep learning has been used to solve these issues.

For multimodal Data fusion [21] techniques like
pansharpening and Super-resolution are now performed using
CNNs and Autoencoders. End to end Pansharpening was
done by stacking unsampled spectral images and learning the
values of the central pixel. The autoencoders predict the
values through downsampled data provided to it and then
upsampling it step by step. [31] reviews CNN-based
approaches and Autoencoder-based approaches separately.
GAN-based approach has also been proposed that uses two
CNN architectures as adversary where discriminator is fully
connected and feature level fusion is performed it
outperformed existing approaches but still have a lot of room
for improvement.

Georeferencing mostly relied on Sift and Surf feature
matching earlier but [21] reviews that a CNN trained with 5
convolutional layers and 2 fully connected layers outperforms
SIFT algorithm and encourages usage of the deep neural
networks for tie-point matching.[23] mentions that such
networks still have a need for improvement but are less
computationally heavy.

The generation of true Orthophotos [29] is necessary for
correct resolutions, drawing the outline in satellite images,
and check the degree of the obliquity of other images. They
are widely used for DSMs to correct themselves. They may
be used as a point of view in stereo pairs for generating 3D
objects. Stereo processing is essential for generation disparity
maps that can be processed further for a 3D generation. In the
next section, we review Stereo processing in detail that uses
deep learning to generate DSMs.

Section 2. Height map Generation

Height maps are of different types and are usually the result
of subtracting Digital Terrain Maps(DTM) from Digital
Surface Maps(DSM). However, that’s not how it's generated.
To generate Digital Elevation Models e need to perform
stereo matching using the satellite images. Height maps can
also be viewed as GAN image to image translation problem
where the input to the Generator is noise and an additional
conditional vector for example city component vector
obtained using semantic segmentation of urban scenes to
obtain certain control over generated fake image. Input to the
Discriminator is the fake generated image and Disparity map
or previously generated image Heightmap to distinguish
between real or fake image. The latest research employing
GAN includes [28] and [19]. In [28] used this approach using
conditional GAN. They represented the height map as a 2D
grid where each point in the grid is a point in the 3D model
and is thus an image in the Data structure. As a generator,
NetMap was used and a fully connected CNN as a
discriminator. In [19] authors try to create a virtual city by
generating through Inverse procedural Modelling and employ
DCGANS to generate 2D terrain and heightmaps resulting in
high-quality 3D models.

Other research views the generation of heightmaps as a
Stereo processing problem. The use of Rational Polynomial
Coefficient models and Stereo pairs by using epipolar
geometry to compute Disparity maps and DSM is very
common [5,6,12,14,17] and is done using Semi-Global
matching or Deep learning Approach. The SGM-based
approach gives high accuracy and has been widely adopted in
3D reconstruction pipeline [5,6,12,14,17] Variant of SGM
has been used in [12] which is a census-based method and is
robust to light changes and rectification errors.

Stereo Processing using Deep learning techniques have been
recently gained popularity. The earliest works were reviewed
in [21] where authors used MC-CNN for matching
similarities between images in the initial stages of stereo
matching and the rest of the stereo pipeline remained the
same. However, In [37], authors have approached
computation of disparity map purely by training in CNN
using DispNet architecture which is Encoder-Decoder based
architecture with 26 layers of contracting and expanding
network parts. This approach is a starting point in considering
Disparity Map computation as a deep learning issue. Recent
works include [34] where the use of DenseMapNet with
custom mean square loss function and replacing 2D
convolutions with  depth-wise separable convolutions.
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DenseMapNet significantly outperformed SGM based
approach making stereo matching purely data-driven rather
than algorithm-driven. [39] reviewed both non-end-to-end as
well as end-to-end stereo matching using Deep learning.
Which includes Flownet, Cascade Residual Learning which
uses DispNet of [37] , ResNet, and GC-Net. Among these
Dispnet proved to be the fastest. Unsupervised deep learning
has also been used for stereo matching [37]. The method uses
architecture called Deep3D which focuses on minimizing
pixel-wise reconstruction loss and significantly improves
performance over supervised learning.

A 3D model generation without DSMs or any other kind of
Elevation data has been researched in [11] where authors
with through Random Forest learn the different attributes
responsible for predicting the height of buildings and other
city components. The authors chose 10 types of predictors
based on Storey, Footprint area, and geometry of the
buildings. 17 combinations were made with these predictors
to train 17 models and calculated Gross error as well as
individual errors in Terms of RMSE and MAE. The story
information of in the available turns out to be the best
predictor with. This approach, however, has lots of
drawbacks like Storey information isn’t readily available
with satellite data, models either overestimate or
underestimate the heights and the method is not foolproof.

Section 3. Scene Segmetation

After the generation of DSMs further processing is to be done
to the DSMs to reconstruct the 3D objects. Scene
Segmentation or large-scale semantic labeling is the third
most important step in 3D model generation.

The earliest work includes [6] where the Support vector
machine is used for image classification to learn the patterns
in the image and later use it for 3D regeneration. [5] uses U-
net architecture for Semantic Labeling of only buildings,
however, the use is restricted to building rooftop extraction
and polygonization lacks building masks or true textures of
buildings resulting in LOD1.[17] overcomes the mask
problem by using U-net architecture to extract building, and
Tree classification masks in raster format and then use them
for polygonization. The method generates accurate building
masks and results in better quality 3D visualization l.e LOD?2.
In works that do not use Satellite images like [19] used
Dilated Net for scene parsing to generate city component
vectors so that discriminators of the GAN can distinguish
from real and fake images. The use of street-level
photographs required simple CNN for semantic labeling and
thus a 5 layered CNN Alex-net was easily able to achieve the
required accuracy for predicting city properties. Urban scenes
are mostly segmented according to land use categories like
buildings, roads, vegetation, water.

In [33] Volumetric 3D reconstruction algorithm partitions the
area into small cells and these areas are then filled with 3D
voxels and Large-scale semantic labeling is done assigning
each voxel a label. If the voxel is assigned with the building
label, then there is a high probability that it is occupied.

However, the labels are assigned manually and a decision tree
is used to boost the prediction accuracy. This approach shows
the importance of scene segmentation in 3D reconstruction.
[21] reviewed usage of CNN in large-scale semantic labeling
and thus can be used reliably and opens possibilities for later
research. In GAN-based methods [28] used CNN having
Mask-Net architecture pre-training it for semantic
segmentation to learn building masks and also predict the
object to which the building height belongs resulting in
LOD2 obtaining MSE of just 5.1. In their works of
combining  stereo  correspondence  with  semantic
segmentation authors trained DenseMapNet and ResNet with
4 input channels and 4th channel being a classification label
from semantic segmentation. They used ICNet for the scene
parsing the baseline model.

Section 4. 3D reconstruction

Many works [12,14,29,36] approach 3D reconstruction from
DSMs directly without having scene segmentation as an
intermediate step. The approach is based on Alignment and
fusion algorithms to reconstruct the 3D models i.e 3D point
clouds are projected aligned and fused and store the 3D
parametric model in a database like CityGML. The task
requires precision and is computationally expensive and most
importantly neglects the object information which is so
readily available in the given data. The results are accurate
but do not generate high-quality 3D models as reconstruction
is viewed as a purely geometric problem.

3D reconstruction was primarily done using procedural
modelling. Procedural modelling is basically generating 3D
models by defining shape rules or procedural grammar of the
3D object to be built. Different deep learning techniques are
now used to automatically generate these procedural
grammars. In [3] Authors used a pipeline in which at each
stage uses Alex-Net architecture to classify the images and
extract the shape grammar. Mostly [13] used 4 classification
DNN, 8 regression DNN, and 1 DNN for foundation and roof
rule, for other shape rules and rotation rectification
respectively from height maps generated from satellite
images. DNN being a variation of Res-Net. The result had
84% accuracy.

It is, however, difficult to produce have shape rules to
generate 3D models thus other approaches like [35]
declarative modeling in which instead of defining procedures
actual visual entities are created and molded as per user
requirement.

Inverse procedural modelling [19] is another approach that
first extracts the procedures and parameters from existing
models and then uses it to generate 3D models from
procedural modeling.

Section 5. Facade and Texture generation

Facade and texture addition is done for LOD improvement of
the generated 3D model. Recent works that use deep learning
include [2] in which the depth of elements made of glass was
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to be calculated. The problem with the Glass element is that
the LiDaR depth data is inaccurate and so using CNN
performed depth completion. Other works [9] use random
forest for facade labeling into different classes like a window,
wall, floor, balcony, etc., and then produce 3D shape rules for
3D reconstruction.

The satellite images mostly deal with a top view of the city
and lack the street-level view which is important for facade
generation. In [18] authors propose a pipeline to generate a
panoramic view of the satellite images using U-Net and
Bicycle-GAN. The satellite image is passed through U-net
which outputs a semantically segmented image and depth.
This is transformed to street-view by a geo-transformation
process and then this panoramic segmented image is given as
input to the BicycleGAN which translates the image back
with its original facade view.

Recently high-quality 3D facades have been viewed as a
GAN problem and different GAN networks try to generate
the multiple features required to improve the LOD of
Buildings. BIM is valuable if LOD improvement is needed.
In [20] authors try to generate high-quality 3D buildings
using StarGANs and introducing new loss functions like
identity loss for the difference between the generated and
input data and perpetual loss which minimizes loss of detail.
StarGAN has the learning capability of 4 properties at a time.
The method used a hybrid chain of 6 StarGANs for
generating the required texture of the building and 3D-

recGAN for generating 3D data.

I1l. PROPOSED METHODOLOGY
We propose the methodology by viewing the generation of
3D models as a GAN problem. Therefore we start by giving
an overview of GANs and then propose a workflow that
might help in future research.

Generative Adversarial Networks (GANS)

GANs have come a long way after been proposed by
Goodfellow in 2014. The [27] basic idea of GAN is that
Generator and discriminator play a game of outwitting one
another. In this game, we support the generator to fool the
discriminator to produce such a fake result that it persuades
the discriminator that it's a real result or at least confuses it
about its authenticity. The generator for example is provided
with the input as random noise to generate an image of a
particular object and it initially does a very lousy job of doing
it. The discriminator however is trained with real images of
hat particular object and thus can easily classify the generated
image as fake or real. Thus generator has to learn more to do
its job of generating better fake image and continue learning
until it fools its adversary, the discriminator in classifying the
fake image as real.

GANs are unsupervised learning models and so the
generation cannot be controlled once started and often they
have low resolution and noisy output. These generators
earlier used o be RBM or VAE but to add a little control to

Figure 1. Work-flow
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the learning process many different variations have been
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