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ABSTRACT 

This work deals with the application of CORDIC in 3D 

graphics. Multimedia applications for 3D graphics have 

massive computational requirements. Since the 3D 

operations are of a geometric nature, it is easy to express 

them using CORDIC-type primitives. Although 

CORDIC may not be the fastest technique to perform 

these operations, it is attractive due to the simplicity of its 

hardware  implementation, since the same iterative 

algorithm could be used  for all these applications using 

the basic shift-add operations. It only needs the use of 2 

shifter and 3 adder modules. Hence here the very well 

known CORDIC is being used to make the basic building 

blocks required for various operations of the 3D 

geometric transformation. The CORDIC architecture 

implemented in this paper is purely combinational since 

only the speed of the part of geometric processor designed 

is being considered. Hence, this paper aims to develop a 

high speed geometric processor. 

 

 
Keywords:CORDIC algorithm, Geometric transformation, 

Lighting, Pipeline architecture,Perspective division, Rendering, 

Vector Normalization  

 

I. INTRODUCTION 
 

3-d Graphics is an integral part of multimedia applications 

such as  computer animation, video games, medical  imaging,  

scientific  visualization  and  simulation,  virtual  reality,  

CAD  tools  etc. 3-d graphics studies methods for digitally 

synthesizing and manipulating visual content. In this paper 

the focus is on the 3 d graphics rendering pipeline which 

converts 3-d model to 2-d image. This pipeline consists of 

three distinct stages: Application, geometric transformation 

and rasterization, where each of these stages is a pipeline in 

itself. In this paper the emphasis is only on Geomertic 

Transformation .Such systems require quality, interactivity 

and simulation of physical effect which calls for the design of 

high-performance graphics subsystems. The main design 

criterion of such system is strong support of arithmetic 

functionality i.e. 3 –d graphics require tremendous 

computational requirement. To cope up with the future 

scaling of performance, it is accept that introduction of 

arithmetic modules which provide high throughput for a 

variety of different arithmetic function will be necessary. The 

CORDIC algorithm might be a good candidate to satisfy the 

simultaneous demand of high throughput and diversity of 

arithmetic functions. 

 

 

 
 

 

 

In this work, we present the formulation of high 

throughput representative 3D computer graphics operations 

in terms of CORDIC type primitives. In this paper we 

describe a fixed-point implementation of the vertex processor 

operations using the COordinate Rotation DIgital Computer 

(CORDIC).A CORDIC-based solution for vertex processing 

exhibits a number of advantages over classical 

Multiply-and-Accumulate solutions. First, since a single 

primitive is used to describe the computation, the code can 

easily be vectorized and multithreaded and second, since a 

CORDIC iteration consists of only a shift operation followed 

by an addition, the computation may be deeply pipelined. 

Third, the CORDIC algorithm produces one bit of accuracy 

per iteration. Thus, all CORDIC-based rotations will have the 

same latency for a given precision, which allows trade-offs to 

be made between precision and latency at run-time. 

 

The remainder of this paper is organized as follows: Next 

section briefs about the basic CORDIC algorithm. The 

section III describes the 3-D graphics pipeline and use of 

CORDIC algorithm in its different operations. Section IV 

presents the design of the CORDIC modules and its 

architecture along with experimental results. The section V 

summarizes the contribution of this paper and all the figures 

and tables have been accumulated in section VI. 

 

II. CORDIC ALGORITHM 
COordinate Rotation DIgital Computer is abbreviated as 

CORDIC. The key concept of CORDIC arithmetic is based on the 

simple and ancient principles of two-dimensional geometry. But 

the iterative formulation of a computational algorithm for its 

implementation was first described in 1959 by Jack E. Volder [1], 

[2] for the computation of trigonometric functions, multiplication 

and division. 

The CORDIC algorithm performs a planar rotation 

as shown in Fig 1. Graphically, planar rotation means 

transforming a vector (Xi, Yi) into a new vector (Xj, Yj). 

Using a matrix form, a planar rotation for a vector of (Xi, Yi) 

is defined as- 

not write “Magnetization (A/m)  1000” because the 

reader would not know whether the top axis label in Fig. 1 

meant 16000 A/m or 0.016 A/m. Figure labels should be 

legible, approximately 8 to 12 point type. 

 

 
𝑋𝑗

𝑌𝑗
 =   

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

  
𝑋𝑖

𝑌𝑖
            (1) 
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Figure 1: Plannar rotation of a vector 

The θ angle rotation can be executed in several steps, using 

an iterative process. Each step completes a small part of the 

rotation. Many steps will compose one planar rotation. The 

angle for each step is given by equation 2 

𝜃𝑛 = arctan  
1

2𝑛
                                                 (2) 

All iteration-angles summed must equal the rotation angle θ. 

 𝑆𝑛𝜃𝑛

∞

𝑛=0

 =  𝜃 3  

Where S = {+1,-1} 

After the required manipulations in the basic equation, the 

CORDIC equations derived are - 

𝑋𝑛+1 =  𝑋𝑛– 𝑆𝑛2−𝑛𝑌𝑛                                   (4) 

𝑌𝑛+1 = 𝑌𝑛 +  𝑆𝑛2−𝑛𝑋𝑛  

𝑍𝑛+1 =  𝑍𝑛 − 𝑆𝑛 arctan  
1

2𝑛
  

Thus, 

thereexisttwomodalitiesofCORDICalgorithm,VECTORING

andROTATIONmode.Invectoring 

mode,coordinates( 𝑋𝑛 , 𝑌𝑛 )arerotated 

until 𝑌𝑛 convergestozero.In 

rotationmode,initialvector(𝑋𝑛 ,𝑌𝑛 )startsalignedwiththexaxisan

disrotatedbyanangleofθieverycycle,so afterniterations,θnis 

the obtainedangle. 

Also,  

𝑆𝑛 =   
𝑠𝑖𝑔𝑛 𝑍𝑛 𝑓𝑜𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑜𝑑𝑒

−𝑠𝑖𝑔𝑛 𝑌𝑛 𝑓𝑜𝑟𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑚𝑜𝑑𝑒
  

Hence, in ROTATION MODE  

𝑆𝑛 =   
1      ;         𝑍𝑛 > 0
−1  ;         𝑍𝑛 ≤ 0

  

And in VECTORING MODE  

𝑆𝑛 =   
−1      ;         𝑌𝑛 > 0
1  ;                 𝑌𝑛 ≤ 0

  

So, the CORDIC method evaluates elementary functions 

merely by table-look-up, shift and add operations. A small 

number (of the order of n, where n bits of precision is 

required in the evaluation of the functions) of pre-calculated 

fixed constants is all that is required to be stored in the 

look-up table. The CORDIC algorithm has nice geometrical 

interpretations: trigonometric, exponential, multiply 

functions are evaluated via rotations in the circular, 

hyperbolic and linear coordinate systems, respectively. Their 

inverses (i.e., inverse trigonometric functions, logarithm and 

division) can be implemented in a “vectoring” mode in the 

appropriate coordinate system. 

 

III. 3-D GRAPHICS PIPELINE 
The process of converting the geometric description of a 3D 

model to a 2D image to be displayed on a monitor is referred 

to as 3D graphics rendering. The 3D graphics pipeline is thus 

the underlying tool for this real-time process. The 3D 

graphics pipeline itself consists of three distinct stages: 

Application, geometric transformation and rasterization, 

where each of these stages is a pipeline in itself. Rasterization 

and Application is not of interest for this work; therefore, it is 

not discussed any longer. The sequence of steps involved in 

geometric transformation is presented in Figure 2, and 

consists of the following stages:  

 
Figure 2: 3-d graphics rendering pipeline 

My work deals with some of the most important 

data-intensive 3D graphics geometric transformation which 

includes lighting, exponentiation, vector normalization, 

perspectivedivision etc. A detail description of them as well 

as their design using CORDIC algorithm is as follows: 

 

1) MODELING AND VIEWING TRANSFORM:  

 

Model transforms link object coordinates to world 

co-ordinates and Viewing Transform, transforms the objects 

from World Co-ordinates to Camera co-ordinates (eye 

space). These include the Euclidean transformations, that do 

not change lengths and angle measures (translation and 

rotation) followed by Affine Transformations (scaling and 

shearing). Of all these operation only rotation operation can 

be implemented with the help of CORDIC algorithm. 

 

Rotation in space is more complex because in space we 

rotate about either x- axis, or y-axis or z-axis. When rotation 

about z axis only the x and y co-ordinates will change, z 

coordinate will remain the same. In effect it is exactly a 

rotation about origin in the xy plane. Here we find that this is 

an application of CORDIC algorithm as this rotation matrix is 

very similar to the CORDIC matrix. Therefore the rotation 

equations are: 

 

1012

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316



  

 

 

We find that the rotation matrix is quiet similar to the basic 

CORDIC rotation matrix. The co-ordinate of the axis about 

which the rotation has to take place remains unchanged while 

the other two are fed into the rotation mode CORDIC block 

diagram i.e. the sine/cosine module. 

 

LIGHTING: Lighting is another compute-intensive task of 

the graphics pipeline. Here, we illustrate the implementation 

using CORDIC primitives for a per-vertex lighting 

calculation. The model computes the intensity in a vertex for 

a single light as follows: 

 

𝑰 = 𝑲𝒂 𝟏 −  𝒍 ⋅ 𝒕 𝟐 +  𝑲𝒔( 𝟏 −  𝒍 ⋅ 𝒕 𝟐 𝟏 −  𝒗 ⋅ 𝒕 𝟐

−  𝒍 ⋅ 𝒕  𝒗 ⋅ 𝒕 𝒔 ) 

 

Since the dot product of unit vectors corresponds to the 

cosine of the angle between the vectors, the computation of 

the intensity requires the computation of the sine and cosine 

of the angle between the pair of vectors {l, t} and {v, t}. To 

allow an efficient implementation with CORDIC primitives, 

we express the above equation   

as follows: 

𝐼 =  𝐾𝑎 + 𝑐((𝐾𝑑 + 𝐾𝑠 sin(𝑣, 𝑡)) sin 𝑙, 𝑡 
− 𝐾𝑠exp⁡[𝑠𝑙𝑛(cos⁡(𝑣, 𝑡))]cos⁡(𝑙, 𝑡)) 

 

Ka, KD, and Ks are the ambient, diffuse, and specular 

coefficients, s is the surface shininess, and l, n, v, and t are the 

light, normal, view, and tangent unit vectors on the surface. 

 

During lighting stage the sine and the cosine of angles θ 

between 3D unit vectors are to be computed as it is explained 

in the above equations. Assuming v1=[x1 y1 z1] and v2=[x2 

y2 z2] are two units vectors, from the computation of sine and 

cosine angles for the equation. First, two CORDIC rotations 

are carried out to align one of the vectors with the x axis. This 

gives cosθ. Then, three CORDIC rotations align the second 

vector with the yOz plane. This gives sinθ. As in the equation 

for calculating light intensity a powering is also required so 

the powering a
b
 is computed as exp (b ln (a)). The 

exponential and logarithm functions can be implemented 

with CORDIC in hyperbolic coordinates. 

 

PROJECTION TRANSFORMATION 

This transforms the view volume to a normalize view 

volume and then does the orthogonal projection. It includes 

the following steps: 

 

i) VECTOR NORMALIZATION:
 

Some data intensive 

graphics operations such as the computation of the effects of 

a light source and bump mapping require the specification of 

normalized vectors. We now discuss the implementation of 

3D normalization using the same CORDIC modules as for 

rotation. Normalizing a vector consists of obtaining a unit 

vector in the same direction. In a Cartesian coordinate 

system, the operation is performed by computing the 

magnitude of the vector and dividing its components by the 

magnitude (or multiplying by its reciprocal).That is-
  

 

𝑉 ′ =  𝑥 ′𝑦 ′𝑧 ′ 0 
𝑇

=
𝑉

 𝑉 

=   𝑥 𝑤 
𝑦

𝑤 
𝑧

𝑤  1 
𝑇

/ 𝑥2 + 1  

A pure software implementation requires three 

multiplications, two additions, one square root and one 

division. The CORDIC approach follows as- First, two 

CORDIC vectoring rotations are needed to calculate the 

angles with axes y and z. Then, a rotation of a unit vector 

along the x axis with the same angles will generate a unit 

vector (that is, normalized) having the same direction as the 

initial vector. 

 

ii) PERSPECTIVE DIVISION : A  projection,  in  terms   of  

the  rendering  pipeline  is   a  way  to  transform  a world  

from  one  dimensionality  to  another . Our initial  world  is   

three  dimensional ,  and  therefore,  the  rendering  pipeline  

defines   a  projection  from  this   3D world  into the  2D  one  

that we  see. The basic perspective projection function is 

simple. It can be  noticed  that  the  scal ing  can  be  

expressed  as   a  division  operation  (multiplying  by  the  

reciprocal ).  And   the  difference  between  clip  space  and  

normalized  device  coordinate  space  is   a  division  by  the 

W coordinate 

𝑉 ′ =  𝑥 ′𝑦 ′𝑧 ′𝑤′ 
𝑇

=
𝑉

𝑤
=

 𝑥 𝑤 
𝑦

𝑤 
𝑧

𝑤  1 
𝑇

 𝑥2 + 𝑦2 + 𝑧2
 

 

CLIPPING: removes the objects that are outside the 

viewable area. It requires 6 comparisons per vertex. 

 

SCREEN MAPPING: Screen mapping is a translation 

followed by a scaling that affects the x and y coordinates of 

the primitives (objects), but not their z coordinates. Screen 

coordinates plus z∈ [-1, 1] are passed to the rasterizer stage 

of the pipeline. 

 

It should be noted that the CLIPPING and SCREEN 

MAPPING do not include any CORDIC application.  

 

The table 1 below gives a brief detail of the different 

CORDIC modules used in 3-D geometric rendering pipeline. 

It can be derived that nearly 60% of the operations of 

geometric transformations canbe performed with the help of 

CORDIC algorithm which helps in development of 
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architectures for high-performance and low-cost hardware 

solutions of those applications. 

 

IV. MODULE DESIGN 

All the 3-D geometric transformations which can be 

performed using CORDIC are being implemented using 

only the two basic CORDIC modules i.e. the Rotation mode 

CORDIC (used for sine/cosine) and the Vectoring mode  

 

Table 1: Use of CORDIC modules in 3-d operations 

 

CORDIC (used for arctangent). In this section we will 

discuss the design and implementation of these modules. 

 

Low latency and high throughput CORDIC modules 

have been designed along with constant scaling. Since the 

number of shifts to be performed by the shifters at different 

stages is fixed (shift-operation through i-bit positions is 

performed at the i
th

 stage) in case of pipelined CORDIC the 

shift operations could be hardwired with adders; and 

therefore shifters are eliminated in the cascaded 

implementation and this actually leads to a reduction in the 

latency of circuit.  Every CORDIC processor utilizes an 

individual arctan value that can also be hardwired to the input 

of every angle accumulator in the absence of a state machine 

which provides simplicity to this type of architecture. For 

high-throughput applications, efficient 

pipelined-architectures with multiple-CORDIC units have 

been developed to take the advantage of pipelineability of 

CORDIC, because the digitalhardware is getting cheaper 

along with the progressive device scaling. 

 

A detailed description of sine/cosine module using 

CORDIC is explained in [8], here the same design is used and 

further calculations are made. 

 

The HDL code for a sine/cosine module [9] has been 

generated in Simulink, Figure 3 and then the code is 

implemented in Xilinx12.1. Figure 4 shows the detailed 

pipelined architecture of the module. 

  

Figure 5 shows the simulation result of the sine/cosine 

module on ISIM, the angle input is 30
0
 i.e. 1555 (hex) and 

results obtained are- sin = 3FFC (hex) and cos = 6EDD (hex) 

 

The arctangent, ө =Atan(y/x), is directly computed using 

the vectoring mode CORDIC rotator if the angle accumulator 

is initialized with zero. The argument must be provided as a 

ratio expressed as a vector (x, y). Presenting the argument as 

a ratio has the advantage of being able to represent infinity 

(by setting x=0). Since the arctangent result is taken from the 

angle accumulator, the CORDIC rotator growth does not  

 

affect the result. 

 

𝑍𝑛 = 𝑍0 +  tan−1[
𝑌0

𝑋0
 ] 

The vectoring mode CORDIC rotator produces the 

magnitude of the input vector as a by-product of computing 

the arctangent. The Figure 6 shows the block diagram of the  

Arctangent module using CORDIC in simulink. The 

pipelined structure of the same code is shown in figure 7. 

  

V. CONCLUSION AND FUTURE SCOPE 

 

In this work, a pipelined architecture of the CORDIC 

algorithm is designed which is used for various trigonometric 

operations, division operation and conversion of polar to 

rectangular co-ordinates and further used for the geometric 

transformations of 3 D graphics.  

 

In this work all the CORDIC based hardware primitives 

needed for 3-D graphics operations have been designed and 

all those 3-D operations which require those CORDIC based 

modules have also been designed. Besides these operations 

all the other operations (like translation, scaling, clipping etc) 

require only matrix multiplication, these have also been 

designed so that it completes a full geometric processor. All 

the designing has been done in simulink block set and HDL 

code of them have been generated, so that FPGA 

implementation of the code can be done. 

 

It has been noticed that in the intended application with an 

aim to design a minimum hardware and maximum 

performance solution, the architecture fulfills both the 

criteria.  

 

As future work to this project an analog design of the same 

can also be done. This can be implemented on FPAA by 

using SIM2SPICE tool which compiles the simulink code to 

spice netlist, ready for simulation. The next step in the 

process chain is to compile the SPICE netlist onto the analog 
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hardware. The GRASPER tool is used to place-and-route the 

netlist onto the FPAA.
 

 

VI. FIGURES AND TABLES
 

In this section all the figures and tables referred in the above 

sections are assembled. 

 
Figure 3: Pipeline architecture of CORDIC for sine and cosine 

 
Figure 4: Pipelined stages inside CORDIC core for sine and cosine module 

 

Figure 5: ISIM simulation result for sin/cosine block 

Table 2: Synthesis results of sine/cosine pipelined CORDIC module 
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Figure 6: CORDIC implementation of Arctangent module in Simulink 

 
Figure 7: Pipelined stages inside CORDIC core for arctangent module 

 
Figure 8: ISIM simulation result for arctangent block 

Table 3: Synthesis results of arctangent pipelined CORDIC module 
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