



ABSTRACT

This work deals with the application of CORDIC in 3D

graphics. Multimedia applications for 3D graphics have

massive computational requirements. Since the 3D

operations are of a geometric nature, it is easy to express

them using CORDIC-type primitives. Although

CORDIC may not be the fastest technique to perform

these operations, it is attractive due to the simplicity of its

hardware implementation, since the same iterative

algorithm could be used for all these applications using

the basic shift-add operations. It only needs the use of 2

shifter and 3 adder modules. Hence here the very well

known CORDIC is being used to make the basic building

blocks required for various operations of the 3D

geometric transformation. The CORDIC architecture

implemented in this paper is purely combinational since

only the speed of the part of geometric processor designed

is being considered. Hence, this paper aims to develop a

high speed geometric processor.

Keywords:CORDIC algorithm, Geometric transformation,

Lighting, Pipeline architecture,Perspective division, Rendering,

Vector Normalization

I. INTRODUCTION

3-d Graphics is an integral part of multimedia applications

such as computer animation, video games, medical imaging,

scientific visualization and simulation, virtual reality,

CAD tools etc. 3-d graphics studies methods for digitally

synthesizing and manipulating visual content. In this paper

the focus is on the 3 d graphics rendering pipeline which

converts 3-d model to 2-d image. This pipeline consists of

three distinct stages: Application, geometric transformation

and rasterization, where each of these stages is a pipeline in

itself. In this paper the emphasis is only on Geomertic

Transformation .Such systems require quality, interactivity

and simulation of physical effect which calls for the design of

high-performance graphics subsystems. The main design

criterion of such system is strong support of arithmetic

functionality i.e. 3 –d graphics require tremendous

computational requirement. To cope up with the future

scaling of performance, it is accept that introduction of

arithmetic modules which provide high throughput for a

variety of different arithmetic function will be necessary. The

CORDIC algorithm might be a good candidate to satisfy the

simultaneous demand of high throughput and diversity of

arithmetic functions.

In this work, we present the formulation of high

throughput representative 3D computer graphics operations

in terms of CORDIC type primitives. In this paper we

describe a fixed-point implementation of the vertex processor

operations using the COordinate Rotation DIgital Computer

(CORDIC).A CORDIC-based solution for vertex processing

exhibits a number of advantages over classical

Multiply-and-Accumulate solutions. First, since a single

primitive is used to describe the computation, the code can

easily be vectorized and multithreaded and second, since a

CORDIC iteration consists of only a shift operation followed

by an addition, the computation may be deeply pipelined.

Third, the CORDIC algorithm produces one bit of accuracy

per iteration. Thus, all CORDIC-based rotations will have the

same latency for a given precision, which allows trade-offs to

be made between precision and latency at run-time.

The remainder of this paper is organized as follows: Next

section briefs about the basic CORDIC algorithm. The

section III describes the 3-D graphics pipeline and use of

CORDIC algorithm in its different operations. Section IV

presents the design of the CORDIC modules and its

architecture along with experimental results. The section V

summarizes the contribution of this paper and all the figures

and tables have been accumulated in section VI.

II. CORDIC ALGORITHM
COordinate Rotation DIgital Computer is abbreviated as

CORDIC. The key concept of CORDIC arithmetic is based on the

simple and ancient principles of two-dimensional geometry. But

the iterative formulation of a computational algorithm for its

implementation was first described in 1959 by Jack E. Volder [1],

[2] for the computation of trigonometric functions, multiplication

and division.

The CORDIC algorithm performs a planar rotation

as shown in Fig 1. Graphically, planar rotation means

transforming a vector (Xi, Yi) into a new vector (Xj, Yj).

Using a matrix form, a planar rotation for a vector of (Xi, Yi)

is defined as-

not write “Magnetization (A/m)  1000” because the

reader would not know whether the top axis label in Fig. 1

meant 16000 A/m or 0.016 A/m. Figure labels should be

legible, approximately 8 to 12 point type.

𝑋𝑗

𝑌𝑗
 =

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑋𝑖

𝑌𝑖
 (1)

3-D Geometric Transformations Using Cordic Algorithm

Richa Upadhyay*, Dr. Nisha Sarwade**

*(Department of Electronics and Telecommunication

Engineering, SVKM’s NMIMS MPSTME, Mumbai

** (Department of Electrical Engineering, V.J.T.I,

Mumbai

1011

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

Figure 1: Plannar rotation of a vector

The θ angle rotation can be executed in several steps, using

an iterative process. Each step completes a small part of the

rotation. Many steps will compose one planar rotation. The

angle for each step is given by equation 2

𝜃𝑛 = arctan
1

2𝑛
 (2)

All iteration-angles summed must equal the rotation angle θ.

 𝑆𝑛𝜃𝑛

∞

𝑛=0

 = 𝜃 3

Where S = {+1,-1}

After the required manipulations in the basic equation, the

CORDIC equations derived are -

𝑋𝑛+1 = 𝑋𝑛– 𝑆𝑛2−𝑛𝑌𝑛 (4)

𝑌𝑛+1 = 𝑌𝑛 + 𝑆𝑛2−𝑛𝑋𝑛

𝑍𝑛+1 = 𝑍𝑛 − 𝑆𝑛 arctan
1

2𝑛

Thus,

thereexisttwomodalitiesofCORDICalgorithm,VECTORING

andROTATIONmode.Invectoring

mode,coordinates(𝑋𝑛 , 𝑌𝑛)arerotated

until 𝑌𝑛 convergestozero.In

rotationmode,initialvector(𝑋𝑛 ,𝑌𝑛)startsalignedwiththexaxisan

disrotatedbyanangleofθieverycycle,so afterniterations,θnis

the obtainedangle.

Also,

𝑆𝑛 =
𝑠𝑖𝑔𝑛 𝑍𝑛 𝑓𝑜𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑜𝑑𝑒

−𝑠𝑖𝑔𝑛 𝑌𝑛 𝑓𝑜𝑟𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑚𝑜𝑑𝑒

Hence, in ROTATION MODE

𝑆𝑛 =
1 ; 𝑍𝑛 > 0
−1 ; 𝑍𝑛 ≤ 0

And in VECTORING MODE

𝑆𝑛 =
−1 ; 𝑌𝑛 > 0
1 ; 𝑌𝑛 ≤ 0

So, the CORDIC method evaluates elementary functions

merely by table-look-up, shift and add operations. A small

number (of the order of n, where n bits of precision is

required in the evaluation of the functions) of pre-calculated

fixed constants is all that is required to be stored in the

look-up table. The CORDIC algorithm has nice geometrical

interpretations: trigonometric, exponential, multiply

functions are evaluated via rotations in the circular,

hyperbolic and linear coordinate systems, respectively. Their

inverses (i.e., inverse trigonometric functions, logarithm and

division) can be implemented in a “vectoring” mode in the

appropriate coordinate system.

III. 3-D GRAPHICS PIPELINE
The process of converting the geometric description of a 3D

model to a 2D image to be displayed on a monitor is referred

to as 3D graphics rendering. The 3D graphics pipeline is thus

the underlying tool for this real-time process. The 3D

graphics pipeline itself consists of three distinct stages:

Application, geometric transformation and rasterization,

where each of these stages is a pipeline in itself. Rasterization

and Application is not of interest for this work; therefore, it is

not discussed any longer. The sequence of steps involved in

geometric transformation is presented in Figure 2, and

consists of the following stages:

Figure 2: 3-d graphics rendering pipeline

My work deals with some of the most important

data-intensive 3D graphics geometric transformation which

includes lighting, exponentiation, vector normalization,

perspectivedivision etc. A detail description of them as well

as their design using CORDIC algorithm is as follows:

1) MODELING AND VIEWING TRANSFORM:

Model transforms link object coordinates to world

co-ordinates and Viewing Transform, transforms the objects

from World Co-ordinates to Camera co-ordinates (eye

space). These include the Euclidean transformations, that do

not change lengths and angle measures (translation and

rotation) followed by Affine Transformations (scaling and

shearing). Of all these operation only rotation operation can

be implemented with the help of CORDIC algorithm.

Rotation in space is more complex because in space we

rotate about either x- axis, or y-axis or z-axis. When rotation

about z axis only the x and y co-ordinates will change, z

coordinate will remain the same. In effect it is exactly a

rotation about origin in the xy plane. Here we find that this is

an application of CORDIC algorithm as this rotation matrix is

very similar to the CORDIC matrix. Therefore the rotation

equations are:

1012

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

We find that the rotation matrix is quiet similar to the basic

CORDIC rotation matrix. The co-ordinate of the axis about

which the rotation has to take place remains unchanged while

the other two are fed into the rotation mode CORDIC block

diagram i.e. the sine/cosine module.

LIGHTING: Lighting is another compute-intensive task of

the graphics pipeline. Here, we illustrate the implementation

using CORDIC primitives for a per-vertex lighting

calculation. The model computes the intensity in a vertex for

a single light as follows:

𝑰 = 𝑲𝒂 𝟏 − 𝒍 ⋅ 𝒕 𝟐 + 𝑲𝒔(𝟏 − 𝒍 ⋅ 𝒕 𝟐 𝟏 − 𝒗 ⋅ 𝒕 𝟐

− 𝒍 ⋅ 𝒕 𝒗 ⋅ 𝒕 𝒔)

Since the dot product of unit vectors corresponds to the

cosine of the angle between the vectors, the computation of

the intensity requires the computation of the sine and cosine

of the angle between the pair of vectors {l, t} and {v, t}. To

allow an efficient implementation with CORDIC primitives,

we express the above equation

as follows:

𝐼 = 𝐾𝑎 + 𝑐((𝐾𝑑 + 𝐾𝑠 sin(𝑣, 𝑡)) sin 𝑙, 𝑡
− 𝐾𝑠exp⁡[𝑠𝑙𝑛(cos⁡(𝑣, 𝑡))]cos⁡(𝑙, 𝑡))

Ka, KD, and Ks are the ambient, diffuse, and specular

coefficients, s is the surface shininess, and l, n, v, and t are the

light, normal, view, and tangent unit vectors on the surface.

During lighting stage the sine and the cosine of angles θ

between 3D unit vectors are to be computed as it is explained

in the above equations. Assuming v1=[x1 y1 z1] and v2=[x2

y2 z2] are two units vectors, from the computation of sine and

cosine angles for the equation. First, two CORDIC rotations

are carried out to align one of the vectors with the x axis. This

gives cosθ. Then, three CORDIC rotations align the second

vector with the yOz plane. This gives sinθ. As in the equation

for calculating light intensity a powering is also required so

the powering a
b
 is computed as exp (b ln (a)). The

exponential and logarithm functions can be implemented

with CORDIC in hyperbolic coordinates.

PROJECTION TRANSFORMATION

This transforms the view volume to a normalize view

volume and then does the orthogonal projection. It includes

the following steps:

i) VECTOR NORMALIZATION:

Some data intensive

graphics operations such as the computation of the effects of

a light source and bump mapping require the specification of

normalized vectors. We now discuss the implementation of

3D normalization using the same CORDIC modules as for

rotation. Normalizing a vector consists of obtaining a unit

vector in the same direction. In a Cartesian coordinate

system, the operation is performed by computing the

magnitude of the vector and dividing its components by the

magnitude (or multiplying by its reciprocal).That is-

𝑉 ′ = 𝑥 ′𝑦 ′𝑧 ′ 0
𝑇

=
𝑉

 𝑉

= 𝑥 𝑤
𝑦

𝑤
𝑧

𝑤 1
𝑇

/ 𝑥2 + 1

A pure software implementation requires three

multiplications, two additions, one square root and one

division. The CORDIC approach follows as- First, two

CORDIC vectoring rotations are needed to calculate the

angles with axes y and z. Then, a rotation of a unit vector

along the x axis with the same angles will generate a unit

vector (that is, normalized) having the same direction as the

initial vector.

ii) PERSPECTIVE DIVISION : A projection, in terms of

the rendering pipeline is a way to transform a world

from one dimensionality to another . Our initial world is

three dimensional , and therefore, the rendering pipeline

defines a projection from this 3D world into the 2D one

that we see. The basic perspective projection function is

simple. It can be noticed that the scal ing can be

expressed as a division operation (multiplying by the

reciprocal). And the difference between clip space and

normalized device coordinate space is a division by the

W coordinate

𝑉 ′ = 𝑥 ′𝑦 ′𝑧 ′𝑤′
𝑇

=
𝑉

𝑤
=

 𝑥 𝑤
𝑦

𝑤
𝑧

𝑤 1
𝑇

 𝑥2 + 𝑦2 + 𝑧2

CLIPPING: removes the objects that are outside the

viewable area. It requires 6 comparisons per vertex.

SCREEN MAPPING: Screen mapping is a translation

followed by a scaling that affects the x and y coordinates of

the primitives (objects), but not their z coordinates. Screen

coordinates plus z∈ [-1, 1] are passed to the rasterizer stage

of the pipeline.

It should be noted that the CLIPPING and SCREEN

MAPPING do not include any CORDIC application.

The table 1 below gives a brief detail of the different

CORDIC modules used in 3-D geometric rendering pipeline.

It can be derived that nearly 60% of the operations of

geometric transformations canbe performed with the help of

CORDIC algorithm which helps in development of

1013

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

architectures for high-performance and low-cost hardware

solutions of those applications.

IV. MODULE DESIGN

All the 3-D geometric transformations which can be

performed using CORDIC are being implemented using

only the two basic CORDIC modules i.e. the Rotation mode

CORDIC (used for sine/cosine) and the Vectoring mode

Table 1: Use of CORDIC modules in 3-d operations

CORDIC (used for arctangent). In this section we will

discuss the design and implementation of these modules.

Low latency and high throughput CORDIC modules

have been designed along with constant scaling. Since the

number of shifts to be performed by the shifters at different

stages is fixed (shift-operation through i-bit positions is

performed at the i
th

 stage) in case of pipelined CORDIC the

shift operations could be hardwired with adders; and

therefore shifters are eliminated in the cascaded

implementation and this actually leads to a reduction in the

latency of circuit. Every CORDIC processor utilizes an

individual arctan value that can also be hardwired to the input

of every angle accumulator in the absence of a state machine

which provides simplicity to this type of architecture. For

high-throughput applications, efficient

pipelined-architectures with multiple-CORDIC units have

been developed to take the advantage of pipelineability of

CORDIC, because the digitalhardware is getting cheaper

along with the progressive device scaling.

A detailed description of sine/cosine module using

CORDIC is explained in [8], here the same design is used and

further calculations are made.

The HDL code for a sine/cosine module [9] has been

generated in Simulink, Figure 3 and then the code is

implemented in Xilinx12.1. Figure 4 shows the detailed

pipelined architecture of the module.

Figure 5 shows the simulation result of the sine/cosine

module on ISIM, the angle input is 30
0
 i.e. 1555 (hex) and

results obtained are- sin = 3FFC (hex) and cos = 6EDD (hex)

The arctangent, ө =Atan(y/x), is directly computed using

the vectoring mode CORDIC rotator if the angle accumulator

is initialized with zero. The argument must be provided as a

ratio expressed as a vector (x, y). Presenting the argument as

a ratio has the advantage of being able to represent infinity

(by setting x=0). Since the arctangent result is taken from the

angle accumulator, the CORDIC rotator growth does not

affect the result.

𝑍𝑛 = 𝑍0 + tan−1[
𝑌0

𝑋0
]

The vectoring mode CORDIC rotator produces the

magnitude of the input vector as a by-product of computing

the arctangent. The Figure 6 shows the block diagram of the

Arctangent module using CORDIC in simulink. The

pipelined structure of the same code is shown in figure 7.

V. CONCLUSION AND FUTURE SCOPE

In this work, a pipelined architecture of the CORDIC

algorithm is designed which is used for various trigonometric

operations, division operation and conversion of polar to

rectangular co-ordinates and further used for the geometric

transformations of 3 D graphics.

In this work all the CORDIC based hardware primitives

needed for 3-D graphics operations have been designed and

all those 3-D operations which require those CORDIC based

modules have also been designed. Besides these operations

all the other operations (like translation, scaling, clipping etc)

require only matrix multiplication, these have also been

designed so that it completes a full geometric processor. All

the designing has been done in simulink block set and HDL

code of them have been generated, so that FPGA

implementation of the code can be done.

It has been noticed that in the intended application with an

aim to design a minimum hardware and maximum

performance solution, the architecture fulfills both the

criteria.

As future work to this project an analog design of the same

can also be done. This can be implemented on FPAA by

using SIM2SPICE tool which compiles the simulink code to

spice netlist, ready for simulation. The next step in the

process chain is to compile the SPICE netlist onto the analog

1014

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

hardware. The GRASPER tool is used to place-and-route the

netlist onto the FPAA.

VI. FIGURES AND TABLES

In this section all the figures and tables referred in the above

sections are assembled.

Figure 3: Pipeline architecture of CORDIC for sine and cosine

Figure 4: Pipelined stages inside CORDIC core for sine and cosine module

Figure 5: ISIM simulation result for sin/cosine block

Table 2: Synthesis results of sine/cosine pipelined CORDIC module

1015

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

Figure 6: CORDIC implementation of Arctangent module in Simulink

Figure 7: Pipelined stages inside CORDIC core for arctangent module

Figure 8: ISIM simulation result for arctangent block

Table 3: Synthesis results of arctangent pipelined CORDIC module

1016

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

REFERENCE

[1] J. Volder, “The CORDIC Trigonometric Computing

Technique,” IRE Transactions on Electronic Computers,

vol. EC-8, no. 3, pp. 330-334, 1959.

[2] J.Walther, “A Unified Algorithm for Elementary

Functions,” Proceedings of Spring Joint Computer

Conference, vol. 38, pp. 379-385, 1971.

[3] J. Duprat and J. Muller, “The CORDIC Algorithm: New

Results for Fast VLSI Implementation,” IEEE Transactions

on Computers, vol. 42, no. 2, pp. 168-178, 1993.

[4] P. Meher, J. Valls, T. Juang, K. Sridharan and K.

Maharatna, “50 Years of CORDIC: Algorithms,

Architectures, and Applications,” IEEE Transactions on

Circuits and Systems, vol. 56, no. 9, pp. 1893-1907, 2009.

[5] T. Lang and E. Antelo, “High-throughput

CORDIC-based geometry operations for 3D computer

graphics,” IEEE Trans. Computers, vol. 54, no. 3, pp.

347–361, Mar. 2005.

[6] J. Euh, J. Chittamuru, and W. Burleson, “CORDIC

vector interpolator for power-aware 3D computer graphics,”

in IEEE Workshop on SignalProcess. Syst., SIPS’02, Oct.

2002, pp. 240–245.

[7] Mihai Simaa, Daniel Iancu and John Glossner

“Software-Based Geometry Operations for 3D Computer

Graphics”, in Proceedings of the 3rd Workshop on

Applications Specific Processors (WASP’04), pp. 53–58,

(Stockholm, Sweden), September 2004.

[8] Richa Upadhyay, Dr. Nisha Sarwade, Shrugal Varde

“Simulink design of pipelined CORDIC for generation of

sine and cosine values”, International Journal of

Computational Engineering Research, Vol-3, Issue-3, pp

312-316, March-2013

1017

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120316

