Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 10 I'ssue 08, August-2021

2-D Iterative Scheme Pressure Correction Based
Navier-Stokes Equation using Nodal Integral
Method for Square Cylinder

1Mr. Vaibhav V. Bondge # Mr. Raghava Raju Khandabhattu
HCL Technologies

Abstract:- This paper deals with solving the Navier-Stokes equations arising during the flow across solid objects. The research work
presented here deals with the numerical modeling of such flows by the application of the Nodal Integral Method (NIM) developed
specifically for this purpose. The NIM-based schemes have been used to solve partial differential equations and are known to have
very high accuracy compared to conventional numerical schemes. The scheme is implemented using a SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations)-like algorithm for pressure and velocity correction instead of solving the exact pressure
Poisson equation. The objective of this paper is to model the unsteady flow of incompressible fluid across a rectangular prism using
simple collocated grid arrangement for the Navier-Stokes equations. The flow is modelled numerically and flow visualizations have
been generated for increasing values of Reynolds Number for a fluid at respective kinematic viscosity.
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1. INTRODUCTION

Over the past several years many computational models have been developed in evaluating flow properties across solid
objects. In current paper, Nodal Integral Method (NIM) has been employed to solve the Navier-Stokes equations arising during
the flow across solid objects. As the nodal schemes are coarse-mesh methods developed to efficiently solve sets of linear and
nonlinear partial differential equations (PDES) for various applications, a significant saving in computational effort is expected
without sacrificing accuracy.

These schemes approximately satisfy the governing differential equations on finite-size bricklike elements called nodes
or cells that are obtained by discretizing the space of variables. The idea of NIM is to generate the shape functions within the
cells, i.e., cell analytical solution for the primitive variables of PDEs, by converting them to ordinary differential equations
(ODEs).

NIM schemes have been developed and applied to solve fluid flow and heat transfer problems. In earlier
implementations of this method, schemes were developed by clubbing the nonlinear convection terms of Navier-Stokes
equations into inhomogeneous terms of ODEs generated from N-S equations [2]. This leads to an inefficient generation of shape
functions for velocity components that captures only the diffusion process and not convection. Moreover, use of the continuity
equation to develop cell analytical solution leads to asymmetry in local solutions or shape functions of primitive variables
(velocity components) in a cell [1]. The shortfalls of these schemes were addressed by the Modified Nodal Integral Method
(MNIM) proposed by Rizwan-uddin [2].

Moreover, since the MNIM is inherently implicit, a transient solution to get to the steady state requires significant effort.
Therefore, in the present work a steady-state formulation of the N-S equation by a NIM approach is developed. It should be
noted that the steady-state NIM formulation cannot be trivially obtained from the corresponding transient formulation.

In the current formulation of NIM for N-S equations, instead of solving the exact Poisson equation for pressure, an
approach similar to SIMPLE is used to correct the pressure at each iterative loop. Thus it takes full advantage of the SIMPLE
philosophy, which is to solve for a velocity distribution using the momentum equations in such a way that it will eventually
converge to the distribution which satisfies the continuity equation. This goal is achieved by having appropriate pressure
correction iterations replace the exact pressure Poisson equation as used by Rizwan-uddin [2].

2. NUMERICAL DETAILS
This section will give the details of modeling and the numerical procedure for solving the equations obtained.
2.1. Steps in NIM procedure
1. Discretize the domain of interest into sub-domains called nodes or cells as shown in the Figure la
2. Carry out the transverse integration procedure (TIP) for each PDE with the dependent variable (@). This transverse
integration over the cell dimensions of all but one independent variable reduces each PDE to a set of ODEs. The

dependent variables in these ODEs are referred to as transverse-averaged variables. These transverse-averaged
variables are represented over the respective faces of a cell as shown in Figure 1c
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Figure 1: Discretization of domain for NIM. (a) Schematic of global (X, y) space, and its division into computational elements.
(b) Local coordinate system with the node (i, j). (c) Transverse-averaged quantities on the surfaces in two adjacent nodes in x
direction.

3. Obtain the cell local solution of these ODEs.

4. By using the continuity of these transverse-averaged variables (and their derivatives for second-order ODEs) on cell
boundaries obtain a set of discrete equations.

5. Apply the constraint conditions to get the full discretized equations.
2.2. Governing equations

Two-dimensional, steady-state, incompressible, isothermal Navier-Stokes equations in primitive variable form are

du  Ov
— 4t —=
dx 0dy 0 (1)
du ov 0%u  0%u 1dp
— +V — — —t+ — )+ -——+ =
uax v dy v (ax2 ayz) p dx 9(xy) =0 @
du ov 0%v  9%v 1dp
—tV——v(—4+—)+-=+ =
u0x v dy v (0){2 0y2) p dy QY(X’y) 0 (3)

where gx (X, y) and gy (X, y) are body force terms such as gravity. Instead of solving the exact pressure Poisson equation, a
correction formula similar to the SIMPLE algorithm is used to update the pressure along with correction of velocity by solving
the momentum Equations (2)—(3), respectively. The elliptical form of the pressure equation in terms of pressure correction p’ is
given by

62pr azp! ) _ (au* av* )
(0)(2 + dy? p ax + ay (4)

where, u” and v" are estimated velocity components in x and y directions, respectively.

2.2.1 Transverse integration procedure and the set of ODEs.
Applying the transverse integration operator, (1/2a;) f_a; dx over the (i, j)1 cell to Egs. (2), (3),

and (4) yields, respectively,

1050 _ &
;—ayzy = S7(Y) )
Wy T _ &
Vca—y—Vv—Szx(y) (6)
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where, the cell-specific subscripts (i, j) on dependent variables are omitted. Terms not explicit in Eqgs. (5)—(7) are lumped into
the right hand side as pseudo-source terms, such as

Sr=g 0| (5o + 5 ) — S5 ax ®)

The inhomogeneous pseudo-source terms in Egs. (5)—(7) are then expanded in Legendre polynomials and truncated at the zeroth
order, which leads to consistent second-order numerical scheme. The above process reduces Egs. (5)—(7) to

1 BZFX(Y) =3,% (9)
p 0y? 12
Ny 2T _ o xy
<o VY —Zayz =5, (10)
v ) 'Y _ < xy
¢ oy Vo "S53 (11)

Similarly, applying the transverse integral operator (1/2a;) f_b;idy and truncating the pseudo-source terms at the zeroth order
yields the above similar equations

2.2.2. Local solutions.

The set of ODEs generated using the transverse integration process are solved locally within each cell. The local solution of Eq.
(9) for x-averaged pressure update p’(y) is quadratic.

— 2
Py =p (5L + Gy + C,) (12)

Similarly, the local solution for transverse integrated velocities z*(y) and 7*(y) are of constant +linear + exponential form. The
local solutions of Eq. (10) and Eq. (11) are, respectively,

Vey

wy) =2 e e5w Lol (13
Vey

v¥(y) = S_: ) + 5,9 ‘i’_c + s—i (14)

where, C1—Cg are constants of integration. These constants of integration are eliminated by transverse-averaged values of
primitive variables at the boundary of the cell (i, j) as boundary conditions.
After eliminating the constants of integration, the resulting expressions for Egs. (12)—(14) are

517

% _ 212 1o Sx o= P+ P
p ij (y) - T (Y -b i,j) + F}]( p ij -p ij—1 )y + <f (15)
Revi,j)
e _ {Vc(i,j) (W5 — T¥ij-1) ~2bij 5xyi’j} e( 2 (ch;]) Y) gxyi’j (eReVi'j*ﬁXi,j—f ﬁxi,j)
u ij (Y) - Revj i € + + Revj i
Ve (e H-1) Ve(ih (e"Vii-1)
bij 5277 (eRevi'j"' 1) (16)
vegij (€ H-1)
ReVi']‘)
7 () = L (= Vi) 20y 557} L G I TR G T )
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where the local or cell Reynolds number in the y direction is defined as
bi Ve
Rev;; = 2ijveip) ']: ) (18)

Applying a similar process to the terms of y-averaged primitive variables in the x direction. The local Reynolds number in the x
direction is defined as

Reu;; = %D (19)

To eliminate the psudo-source terms we apply constraint equations. Six discrete algebraic equations per cell, derived are in
terms of 12 unknowns, p*(i,j), u*(i,j), v*(@i,j), p¥(ij), w¥(@ij), v> (i), S;7@J), S @j), S37(Q), Sy (i), S*(ij) and
SY*(i,j), Thus six more equations are needed for closure. These equations are obtained by using six constraint equations. The

first three constraint equations are obtained by ensuring that the pressure Poisson and the momentum equations are satisfied
over each cell in an integral sense. Thus, applying the cell-averaged operator

1 ai_]- bi,j
4a;;b;;

dxdy

—aij ~ ~bij

on Egs. (2), (3), and (4) yields the relations between pseudo-source terms. These are

SV + 7)) +faap =0 (20)
37 (1J) +8%(ij) +fap =0 (21)
S37(ij) +87(ij) +faap =0 (22)

respectively where,

o (e Y i

fip = ( P (23)
1 (Pif¥~Pizy”

f A _( )] B ) 24

26 = S\ T, (24)
1 (Pij*~Pij-1"

f A _( )] )) ) 25

aw =0\ Ty, (25)

These constraint equations ensure that the final numerical scheme is conservative. f; will work as source term for the discretized
pressure Poisson. f, and f3 will work as source terms in the discretized x-momentum and y-momentum equations, respectively.
The last three constraint equations are obtained by imposing the condition that the cell-averaged variables be unique,
independent of the order of integration, i.e.

XY 1 bi] Ix — 31] ry — yx
P —2b Ly, P dy = _Za 2P ax =0 (26)
1 aj
u/)_cy - f ij u - = ij ury dx :uIJ/x (27)
i,j 1] —b; 2aj; V=i i,j
XY 1] lx - 1 ajj /y — VX
i,j ; Vij dy 2ar; 9-aij v dX Vi (28)

The pseudo-source terms are eliminated by applying all six constraints equations to six discrete equations. The final set of two
discrete algebraic equations for pressure is

Fu P ij-1 Fl?p ij tFu3 p jj+1 T Fn (p’y"' p,ly—u) +Fis (?71?}+1+ T??/—1j+1)

= Fasfigj + Far fagjen (29)
Fa1 2731_1}' —F2 173; + Fas 173;1}- +Fa (Z;Ifjﬂ;’fj-ﬂ + Fos (17?+1j+ 2;’?—1141) (30)

= Fog fij + For fagss

Similarly the two discrete x-momentum equation equations are
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(32)

Due to similarity in the discretization process, two discrete y-momentum equations can be obtained by replacing variable u by v
and source term f by f3 from the discrete x-momentum equations, i.e., Egs. (31) and (32). Thus a set of six discrete algebraic
equations per cell, two for pressure and four for momentum equations, for six transverse averaged primitive variables, is
obtained. The coefficients, Fi1, Fi2, etc., are functions of a;, bj, u, Reu;j, and Revi;. Note that the corresponding transient
formulation has eight equations per cell (six for momentum and two for pressure).

2.3 Solver Details
2.3.1. Algorithm for iterative procedure
The steps involved in the solution procedure are as follows.

1. Noting that the grid is collocated (as shown in Figure 1), guess the value of the transverse average pressures (p¥)", (p¥)" at
appropriate grid surfaces. Similarly, set the values of transverse average velocities [ (u*)", (v*)" (wY)" and (v¥)"] at
appropriate grid surfaces. Superscript n is the sequence number of the nonlinear iterative loop.

2. For given nth-level pressure (p™)™, (p?)™ the discretized momentum equations are solved for transverse-average velocities
using current pressure in their source term. The discretized pressure corrections for (p'*, p’Y) are solved in the same loop after
the momentum equations using the current available components of velocity in their source terms. The above equations are
solved using the Gauss-Seidel method. Thus, both velocity and pressure are corrected one after the other in the internal loop.

3. The criterion used for convergence is based on mass residue term f;, which is also a source term for the pressure-correction
equations. Convergence is achieved when f1 (which is also the nodal discretized form of the continuity equation) approaches a
defined tolerance limit.

4. If convergence is not achieved, the velocity and pressure are updated as follows:

@™ =1 -p) @" + v @ (30)
M =L-p) @+ (@™ (31)
®" = "+ @™ (32)

where, yy and yp are relaxation factors for velocity and pressure, respectively. From extensive numerical experimentation it was
found that for low nonlinearity in the momentum equation, i.e., for low Reynolds (or Rayleigh) number, the values of yv, vp
could be chosen between 0.8 and 1.0, but for high Reynolds (or Rayleigh) number, yy is as low as 0.5 and y, could be 0.5.

5. Repeat steps 2—4 until convergence is achieved. The error tolerance limit (¢) used for the convergence criteria is based on the
root-mean-squared value of mass residue fi in an absolute sense.

2.3.2 Boundary conditions

In most cases free slip boundary condition is commonly used which involves vortex shedding because the cross-stream outlet
boundary conditions is a very important issue. An outflow boundary (i) permits the flow to exit the domain with a smooth
discharge of vortices, (ii) has a minimum effect on the flow inside the domain, and (iii) has a negligible effect on the near body
flow. For finite difference and finite volume discretization, Neumann boundary condition (NBC) and convective boundary
condition (CBC) are the two most important boundary conditions but here we have put up the Neumann boundary condition at
the top and bottom boundary as well as outlet of the computational domain which include the gradient of the flow variable while
Dirichlet boundary condition applied at the inlet where value of flow variables are known.
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Figure 2: Boundary conditions at inlet, outlet, top and bottom boundary of the computational domain including square cylinder placed in domain.

In the above Figure 2 a solid square cylinder is placed inside the unconfined boundary (H = L = 1, B = 0.2) having constant inlet
velocity of unit magnitude in x direction while magnitude of velocity component in y direction at inlet is zero. At top and
bottom boundary U-velocity, V- velocity and pressure gradients are equal to zero. At the outlet of computational domain,
velocity and pressure gradient in x direction are equal to zero.

3. RESULTS AND DISCUSSION
A square cylinder model was developed by considering a fluid of various kinematic viscosity and then it is compared with
numerical models developed by Norberg [4] and Robichaux [5] as it was not possible to get the values from the paper, contour
plots are been compared and are similar to the obtained result. Various results are obtained for different Reynolds number using
MATLAB program. The figures below show the variation in vortex shedding characteristics with increasing values of the
Reynolds number.
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Figure 3: Contours obtained for various Reynolds numbers
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The above results shown in Figure 3 are displayed at steady state. Initially, the flow is highly laminar and the flow does not
show any separation. Eventually as the Reynolds number reaches Re=100, eddy formation begins on the downstream side. As
Reynolds number reaches a critical value, flow separation begins and tendency of vortex formation increases. Thus, for high
kinematic viscosity, the tendency of the fluid to stick to the no-slip surfaces increases. Hence, a clear flow separation does not

occu

r till higher values of Reynolds number are attained.

4. CONCLUSION

From the above studies, we have concluded that the flow separation and vortex shedding phenomena are largely governed by
the Kinematic viscosities of the fluid at particular value of Reynolds number. Also, for a fluid, formation of eddies increases
with increase in Reynolds number. Further investigations may be conducted into investigating such flows across series of square
cylinder placed or parallel square cylinder placed, changing the boundary conditions, arbitrary shape to evaluate flow pattern
characteristics across such obstacles.

Nomenclature

®
o

oD@ MW >

Half of the size of the discretized cell or node in the x and y directions, respectively
Coefficient in discretized coupling equation for transverse-averaged velocity components

= Term defined in expanded form of coefficients equations.

= Source term for discretized pressure Poisson and momentum equations
= Ccoefficients for discertized pressure Poisson and momentum equations

= Volumetric body force term for momentum equations

= Number of cells in domain of interest
= Pressure correction transerve averaged

Re, Ra = Reynolds and Rayleigh number, respectively
Reu, Rev = Cell Reynolds number in x and y directions, respectively

S
u
u,v

= Pseudo-source terms
= Velocity component in x direction

= Transverse-averaged u and v velocity components, respectively

Ue, Ve = Cell-averaged u and v velocity components, respectively

u* ,v* = Estimated velocity components in x and y directions, respectively

% = Velocity component in y direction
Y = underrelaxation factor

a = thermal diffusivity of fluid

B = Coefficient of thermal expansion

v = Kinematic viscosity

@ = Arbitrary dependent variable

p = Density

Subscripts

¢ = Cell-averaged quantity

i,j =Index inxandy directions, respectively

Superscripts

App

X = Xx-averaged quantity
y  =y-averaged quantity

xy = cell-averaged quantity
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Since the formulation is symmetric in nature, the expressions for coefficient from F41 to F49 could be generated by replacing a
by b, Reu by Rev, i by j, and vice-verse.
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