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Abstract 
Background: Alzheimer's disease (AD) is a type of dementia that progressively damages brain cells, resulting in 
memory and thinking deficits, loss of basic abilities, and ultimately death. While there is no cure for AD, its onset 
diagnosis can prevent it from becoming too severe and improve patient’s life. Recent advancements in computer vision 
have found to be impactful, however the datasets for AD are limited and heavily imbalanced. Conventional approaches 
for addressing these issues are appropriate but not optimal and GANs based approaches are expected to outperform 
them. However, the predominantly used DC-GAN is prone to suffer from “Mode Collapse”. This issue was resolved by 
using WGANs-GP. 

Methods: This research uses both experimental and simulation methods and utilises WGAN-GP for generating synthetic 
MRIs for addressing the issue of dataset scarcity for AD and class imbalance in the Kaggle Alzheimer’s Dataset of axial 
MRIs. The quality of these synthesised MRIs was accessed using metrics like FID Score, SSIM, PSNR, SD and 
Seaborn’s Distplot. The effectiveness of this approach was evaluated by comparing its results with those of the 
conventional approaches of oversampling, SMOTE, image augmentation and cost sensitive learning to validate the 
hypothesis of this research. 

Results: The synthetic MRIs were found to be as good as the original ones both in terms of quality and diversity as they 
resulted in mean FID Score of 0.13, mean SSIM of 0.97, mean PSNR of 32 dB, and mean Sharpness Difference (SD) 
of 0.04 (over all the minority classes) which are all close to their ideal values. This approach resulted in an overall 
increase of 11.77% in Balanced Accuracy, 15% increase in Matthew's Correlation Coefficient (MCC). The study also 
found a 91.4% improvement in the performance on minority classes, at the expense of a 1% reduction in performance 
on the majority class. Finally, the results of this approach were compared with those of similar researches which used 
DC-GANs to generate synthetic MRIs for addressing class imbalance in Kaggle Alzheimer’s Dataset and it was found 
that both the approach and the final product produced in this study are superior than the other researches.  

Conclusions: The study found that using WGAN-GP to address class imbalance in the Kaggle Alzheimer’s Dataset was 
not only successful but also superior to conventional approaches. The final research product was made publicly available 
on Kaggle which addressed the issue of dataset scarcity for AD. Additionally, this approach can be extended to automate 
the diagnosis of AD using all three parts of MRI in 3D and can also be applied to other medical problems facing similar 
issues. 
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1. Introduction
The most prevalent form of dementia is Alzheimer’s Disease (AD) [1,2], which demands extensive medical care. It 
disrupts fundamental cognitive abilities, causing harm to brain cells, memory loss and hinders thinking skills [3,4]. 
The condition progressively deteriorates from very mild to severe, making it challenging for an individual to perform 
daily tasks without assistance [5]. The lack of a cure for AD presents the biggest challenge for specialists in this field 
[6]. However, early detection and the use of available treatments can help to alleviate symptoms or slow their 
progression [7]. 
Upon reviewing and examining existing studies, several common trends and shortcomings have been identified. One 
of the most notable trends is the rapid growth in the detection and prediction of AD using machine learning techniques. 
However, there are also significant gaps, including an imbalance of events with attributes, scarcity of dataset to train 
deep learning models, class imbalance, overtraining and lack of external validation [8]. Despite these gaps, well 
designed and validated studies have shown that machine learning methods can enhance the accuracy of AD prediction 
compared to traditional statistical methods [9]. Amongst all these gaps, two of the most prominent ones are dataset 
scarcity and class imbalance [10]. Dataset scarcity, which often occurs due to confidentiality of medical data, can 
result in overfitting, inconsistent accuracy, lack of representativeness, and unreliable performance metrics [10]. On the 
other hand, class imbalance which can occur due to skewed distribution of people suffering from each stage of AD 
can cause the classifiers to be biased towards the majority class, leading to incorrect classifications such as identifying 
a person with early symptoms as "No Alzheimer's" [10]. 
The focus of this research is to generate synthetic MRI scans for AD using Generative Adversarial Networks (GANs) 
on Kaggle Alzheimer’s dataset. This is expected to address both the class imbalance problem and dataset scarcity. It 
is also important to note that this research is limited to axial part of MRIs. If other parts including coronal and sagittal 
views were included, then classifiers are expected to be more robust and effective. 

1.1 Hypothesis 
“The hypothesis of this project is that Synthetic MRIs would be of sufficient quality for deep learning models to 
discover new patterns, resulting in overall improved performance and particularly significant improvement for 
the minority classes which would effectively address the challenge of class imbalance and would give better results 
than conventional approaches for solving class imbalance.” 

1.2 Research Question 
“What is the impact and effectiveness of using Synthetic MRIs generated by Generative Adversarial Networks 
(GANs) on the performance of Deep Learning (DL) models in detecting Alzheimer's Disease (AD), particularly in 
terms of resolving the class imbalance problem and scarcity of medical data for Alzheimer’s?” 

1.3 Aim 
Deep Learning models require substantial amounts of data to train on, in order to perform well and produce credible 
results, however, medical problems usually suffer from scarcity of data. There are currently only four publicly 
available datasets for Alzheimer’s i.e., “ADNI” [11], “OASIS” [12], “EPAD” [13] and “Kaggle Alzheimer’s Dataset” 
[14]. All of these datasets have severe class imbalance.  

This research only focusses on Kaggle Alzheimer’s Dataset and aims to address the challenges of scarcity of dataset 
and class imbalance issue by implementing GANs to generate synthetic MRI scans for its each minority class. 

1.4 Project Objectives 
  This research has the following S.M.A.R.T. objectives 

1. Exploring the current approaches to deep learning for detecting and solving the class imbalance problem in
the diagnosis of Alzheimer’s Disease. Having a thorough understanding of Alzheimer's is crucial for making
informed decisions and interpretations. Additionally, having a clear comprehension of algorithms and
techniques will help with the practical side of conducting research in this field.

• Undertake a literature review around different machine learning techniques and approaches for
detecting Alzheimer’s

• Undertake a literature review around different techniques to solve class imbalance problem for
Alzheimer’s

• Combine the literature from the above two areas to identify the limitations in other researcher’s
approaches to support the rationale behind approach for this study.
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2. Generate synthetic images for each minority class in the Kaggle Alzheimer’s dataset and evaluate the quality
of the synthetic images. This will provide the synthetic dataset which would be the final product of this
research on which pretrained models/CNNs will be evaluated and compared.

• Identify the appropriate type of GAN to generate synthetic images for each minority class by
examining the limitations in current methods as discovered through the literature review.

• Split the Kaggle Alzheimer’s dataset into train and test sets and implement the appropriate GAN
to generate synthetic images for each minority class separately only using the images in the train
dataset and not the test dataset.

• Determine the appropriate qualitative and quantitative methods/metrics to assess the quality of
synthetic images with respect to real images for each minority class.

3. Develop, evaluate and compare several deep learning models for classifying Alzheimer’s MRIs into their
respective classes. The best performing classifier will be used to test the hypothesis of this research.

• Identify the appropriate metrics for evaluating the performance of pretrained models/custom
CNN for severely imbalanced datasets.

• Train, evaluate and compare multiple pretrained models/custom CNN using the appropriate
quantitative metrics.

• With the test data remaining fixed, evaluate the hypothesis of this research by comparing the
performance of the best performing pre-trained model/custom CNN. This comparison will be
made by analyzing the model's performance when it was trained solely on real MRIs versus
when it was trained on the bigger balanced dataset of real and synthetic MRIs.

4. Evaluate the results and approach of this research project.
• Evaluate the results and effectiveness of the approach for this project in comparison to previous

research on machine learning techniques to solve the class imbalance problem.
• Discuss GRAD-CAMs [15] using the best classifier so far, to identify which parts of the MRIs

did the model focused on, in order to make its classification decisions.
• Conduct a self-reflection of the research project process to identify what aspects were effective

and what areas could be improved.
• Determine avenues for future work and acknowledge the limitations of the current study.

5. Publish the repository and the final product (Real + Synthetic MRIs combined dataset) of this research.
• Organize all files into appropriate folders and publish all the work for this research study as a

repository on either GitHub or OneDrive, taking data management and reproducibility into
consideration.

• Publish the final product, the combined dataset of real and synthetic MRIs, as open source on
Kaggle and accompany it with an adequate description of the data, being cognizant of ethical,
legal, social, professional, and security concerns relevant to this research study.

6. Present the results of the research study in a dissertation and viva
• Create a draft of the dissertation for the supervisors to review, in compliance with the KF7029

guidelines.
• Prepare for the presentation and viva for KF7029 MSc Computer Science and Digital

Technologies project.

1.5 Research Approach 
This study adopts a deductive (top-down) research approach, as it hypothesizes that utilizing a multiclass, well-
balanced dataset of real and synthetic MRIs will result in an improved overall performance and effectively address the 
class imbalance problem, particularly in terms of performance on the minority classes. This research approach includes 
both experimental and simulation components. In the experimental component, various pretrained models/custom CNN 
are evaluated and compared based on their performance on a fixed test dataset. The best classifier will be used to test 
the research hypothesis. The simulation component involves using WGAN-GP to generate new data from Gaussian 
noise and uncover patterns in the input dataset to produce synthetic MRI scans. If the hypothesis is supported, this 
finding would suggest that synthetic MRIs are an effective simulation of real ones. The code is available at: [Link] 
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The effectiveness of this research approach will be compared to conventional approaches to validate its superiority. 
Finally, the best performing classifier so far, which overcame the issue of class imbalance, will be used to implement 
GRAD-CAMs to visualize, which parts of the image did the classifier focussed on, in order to make its classification 
decisions. If this research approach is successful then the final product of this research would be made publicly 
available by publishing it on Kaggle. This will address the issue of scarcity of medical dataset for Alzheimer’s. 

1.6 Structure of The Dissertation 
The structure of the remaining dissertation is as follows: it begins with a systematic and critical review of the literature 
related to this study. This review encompasses a comprehensive examination of the current methods for the early 
detection of Alzheimer's disease, as well as the solutions proposed to tackle the class imbalance problem. The review 
also evaluates the benefits and limitations of these methods with the aim of drawing meaningful conclusions and 
insights that can inform the current study.  

The following chapter presents the principal research approach and offers an in-depth discussion on the detailed 
design and methodology for the generation of synthetic images. It also examines the machine learning techniques 
used to address the class imbalance problem through the utilization of synthetic MRIs and conducts a comparison 
with conventional approaches to evaluate their effectiveness.  

The next chapter presents the major findings of the study and provides a thorough analysis of these results. The 
subsequent chapter conducts an evaluation of the primary outcomes of the study and includes the researcher's personal 
reflection on their journey. Finally, the last chapter summarizes the key findings of the study, proposes directions for 
future research, and acknowledges the limitations of the current study. 
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2. Literature Review 
2.1  Background: 
Alzheimer's disease (AD) is the most common form of dementia [1,2] accounting for 60-80% of all forms of dementia 
[15,16] that progressively kills brain cells, resulting in deficits in memory and thinking capacity, and eventually leading 
to loss of basic tasks [3,4]. The pathogenesis of AD is caused by the accumulation and overproduction of amyloid-β 
(Aβ) plaques and hyperphosphorylation of tau protein [17], disrupting the nucleocytoplasmic transport between neurons, 
leading to cell death, and causing memory and learning loss. The symptoms develop slowly and gradually become severe 
with time [5]. Although old age (over 65) [18] is the primary risk factor for AD, but it is not exclusively age-related and 
is more prevalent in women than in men [19]. Recent data from the World Alzheimer's Association indicates that over 
4.7 million individuals aged over 65 in the United States have been diagnosed with Alzheimer's disease [18]. This 
number is projected to increase to 152 million people by 2050, with people developing AD every 3 seconds [20]. The 
estimated annual cost of AD is expected to reach $1 trillion, with predictions indicating that this figure will double by 
2030 [21]. 

Alzheimer's disease can be categorized into the following stages [22]: 
1. Very Mild Impairment: This stage is characterized by memory loss, which is common as people age. However,

for some individuals, this may lead to AD. Those with very mild impairment may experience cognitive
difficulties that impact their daily lives, such as forgetfulness, uncertainty, changes in personality, getting lost,
and difficulties with routine tasks.

2. Mild Impairment (MCI): Patients at this stage require extra care and support, and their everyday lifestyle
becomes more complex. Symptoms are similar to very mild impairment, but more severe. Patients may need
assistance with basic activities such as combing their hair, and may exhibit significant personality changes such
as becoming paranoid or irritable without reason. Sleep disorders are also common.

3. Moderate or Severe Impairment: Symptoms may worsen during this stage. Patients may lose the ability to
communicate, and may require full-time treatment. They may also lose bladder control and be unable to perform
basic actions such as keeping their head up or sitting in a chair. It usually takes 4 years to transition from mild
to severe Alzheimer’s.

There is no cure for AD [5] which makes its early diagnosis crucial as it facilitates prompt treatment, minimizes medical 
care expenses, enables accurate diagnosis using advanced diagnostic techniques, prevents the disease from becoming 
too severe and improves the patient's quality of life [18]. Traditional methods of AD diagnosis are dependent on manual 
feature extraction, which is both time-consuming and subjective [22]. In contrast, the application of ML techniques, 
especially those utilizing CNNs, can automate feature extraction and enhance efficiency in AD diagnosis [23]. The 
complexity of multivariate heterogeneous data in AD diagnosis, coupled with the fact that the detection of AD has 
become a diagnostic indicator for other forms of dementia, creates a challenging task of manually comparing, 
visualizing, and analysing the data [24,25]. Therefore, ML plays a crucial role in AD diagnosis by enabling the 
management of the vast amount of data and enhancing diagnostic accuracy [26].  

Biomarkers are measurable indicators of a biological state or condition that can be used to diagnose, monitor, or predict 
disease progression [27]. There are five types of biomarkers for detecting AD: neuroimaging of β-amyloid protein 
deposition, cerebrospinal fluid (CSF), photon emission tomography (PET), single photon emission computerised 
tomography (SPECT) and Magnetic Resonance Images (MRIs) [4,27]. However, data on all modalities for individual 
subjects is insufficient for reasonable classification. CSF biomarkers are promising for early AD diagnosis, but are costly 
and invasive with potentially painful lumber punctures [28,29]. PET can cause patients to experience distress and 
exposure to ionizing radiation [15]. Contrarily, MRIs have imaging flexibility, tissue contrast, no ionizing radiation, and 
can provide useful information on brain anatomy [5]. MRIs are typically 3D, but can be converted to 2D by dividing 
into axial, coronal, and sagittal parts. 

There are currently only four open source verified MRI datasets available for AD which are ADNI [10], OASIS [11], 
EPAD [12] and the Kaggle Alzheimer’s dataset (axial MRIs only) [13]. After reviewing various studies, the main gaps 
in the ongoing research have been discovered including an imbalance of events with attributes, class imbalance, 
overfitting (high model parameters), and a lack of external testing and validation due to scarcity of datasets (due to 
patient-doctor confidentiality) of the same biomarkers used for training [29].  

NOTE: Read the preliminary section in the appendix for understanding the basics of CNNs and their evaluation metrics 
(Appendix A1-A4) and GANs and their evaluation metrics (Appendix B1-B3) before proceeding to the next section 
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2.2  Related Works: 
This section reviews conventional and generative approaches employed by several researchers to tackle the issue of 
class imbalance and scarcity of datasets for AD. 

2.2.1 Conventional Approaches: 
Lu et al. [30] developed a new deep neural network with a multistage technique for AD identification, achieving 82.4% 
accuracy for MCI prediction and 94.23% sensitivity for Alzheimer's disease and those patients later got exposed to AD 
in three years. Gupta et al. [31] proposed a diagnosis method combining coronal, axial and sagittal features from MRI 
scans, achieving 96.42% accuracy for AD classification. Ahmed et al. [32] proposed an ensemble CNN model with 
90.05% accuracy for AD diagnosis using left and right hippocampus area in MRI scans to prevent overfitting. Mehmood 
et al. [33] extracted Grey Matter (GM) using tissue segmentation and achieved 98.73% accuracy in classifying AD vs 
NC and 83.72 % accuracy in classifying EMCI vs LMCI patients. Wang et al. [34] used a 3D ensemble model 
convolutional network to classify AD and MCI. The model consisted of 3D-DenseNets [35] optimized with a 
probability-based fusion approach, achieving a classification accuracy of 97.52% with the ADNI dataset. Janghel and 
Rathore [36] used pretrained VGG16 [37] to extract AD features from ADNI database, and then used SVM [38]. Linear 
Discriminate [39], K means clustering [40], and decision tree algorithms [41] and achieved 99.95% accuracy with 
random forests in functional MRI images and 73.46% average accuracy in PET images. Ge et al. [42] proposed a 3D 
multiscale deep learning architecture that achieved a test accuracy of 93.53% on a subject-segregated, random brain 
scan-partitioned dataset with an average accuracy of 87.24%.  Different biomarkers are used to identify group 
differences in Alzheimer's disease, but they are not designed for individual classification. Due to the scarcity of datasets 
for a single type of biomarker, Zhang et al. [43] proposed a method that combines MRI, PET, and CSF biomarkers to 
differentiate between healthy and AD participants. Using a baseline dataset of 202 instances, they achieved a 93.2% 
classification accuracy with 10-fold cross-validation using all three modalities. The authors claimed that multimodal 
classification is more robust and consistently improves accuracy compared to individual modalities, which resulted in 
86.5% accuracy.  

All of these researchers performed binary classification using different datasets (mostly ADNI) and different modalities. 
It is easier to get higher accuracies with binary classification as it is easier for the models to learn patterns and 
differentiate between just 2 classes, but the problem with binary classification is that the models are prone to classify a 
person with early symptoms of AD as “Not Impaired” which is highly undesirable for diagnosis of Alzheimer’s at an 
onset stage. Thus, multiclass classification is important. However, limited availability of data for individual subjects on 
all modalities and class imbalance still remained significant challenges. 

If the dataset is small, heavily imbalanced and if the model is too deep, then while backpropagation, the optimiser may 
not be able to update the parameters properly as the gradients might become too small when they reach the upper layers. 
This might result in overfitting or make the models more biased towards majority classes as the model may memorize 
the examples rather than learning the underlying patterns. Oversampling by randomly duplicating instances from the 
minority class until it reaches a desired ratio with the majority class can address class imbalance and can also tackle 
overfitting by increasing the size of the training set and reducing the model's sensitivity to noise in the data.  

Eva et al. [44] attempted to address class imbalance in the Kaggle Alzheimer's Dataset by randomly oversampling 
minority classes. They achieved 60.67% and 60.75% accuracy using ResNet18 [45] and ShuffleNetV2 [46], 
respectively, with oversampling, compared to 50% and 50.27% without oversampling. Meanwhile, Ahmed et al. [47] 
used the DAD-Net [47] model and ADASYN [48] oversampling technique, which uses a weighted distribution to 
generate more synthetic instances near the boundary of the minority class and the majority class, to achieve 99.2% 
accuracy and address class imbalance in the same dataset. Similarly, Murugan et al. [49] also addressed class imbalance 
by implementing SMOTE [50] which uses KNN [51] and interpolates the nearest neighbouring images in the minority 
class to generate similar images, and achieved 99% accuracy with the Kaggle Alzheimer’s dataset. 

One of the reasons for such significant improvement was that the number of images in the minority classes were so less 
that when they were oversampled and divided into train and test sets, the classifier was evaluated on the exactly same 
minority class images on which it was trained. This is cheating, rather they should have kept the test dataset separate 
since the beginning. While oversampling can improve accuracy by preventing overfitting, it may not be the best solution 
for class imbalance as the same minority class images are duplicated, preventing the model from learning any new 
patterns. This means that oversampling does not enhance the model's ability to generalize well to new patient data.  
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Oktavian et al. [52] utilized the ResNet-18 [45] architecture with mish activation function and a weighted loss function 
to address the issue of class imbalance in ADNI dataset of 306 MRIs. This resulted in increase in accuracy from 69.1% 
to 88.3%. Liu et al. [53] also tried something similar by using a type of hard negative mining technique that samples 
difficult cases during the training phase which resulted in the increase in accuracy from 72% to 89.7% with the same 
dataset. Although weighted loss or cost-sensitive learning can improve the model's performance on the minority class 
by assigning higher weights and penalising misclassifications on the minority classes more, it does not increase the 
diversity of images in the dataset. This approach does not add new patterns or variations to the dataset, which does not 
improve the model's robustness or generalization ability on future patient’s MRIs, nor does it address the issue of dataset 
scarcity. Therefore, cost-sensitive learning is not a scalable solution for addressing both class imbalance and dataset 
scarcity. 

Helaly et al. [54] and Afzal et al. [55] tackled class imbalance issues in AD MRI datasets using different image 
augmentation techniques. Helaly et al. augmented and oversampled the ADNI dataset to 48,000 images by rotating and 
flipping the MRIs and built custom 2D and 3D CNN models achieving 93.61% and 97% accuracies respectively. 
Whereas, Afzal et al. overcame the imbalance in the OASIS dataset using their own augmentation method, which 
involved randomly cropping (left, right, top, bottom and whole) and rotating images (90, 180 and 270 degrees), resulting 
in 98.41% and 95.11% accuracies for their 2D and 3D CNN models, respectively. This indicated that combining all 
three MRI parts (3D) may not always outperform 2D, and it varies depending on the dataset involved and the techniques 
applied. While augmentation is a reliable technique for preventing overfitting and enhancing diversity, it may not always 
be suitable for addressing class imbalance or data scarcity because it doesn’t create entirely new images but only creates 
variations of existing images that can sometimes be unrealistic and implausible, causing confusion in the model and 
leading to poor performance. 

While these approaches primarily relied on accuracy to evaluate their effectiveness, accuracy may not be suitable for 
highly imbalanced datasets as it could be dominated by good performance on the majority class. 

2.2.2  GANs Based Approaches: 
GANs [56] based approaches for Alzheimer’s Disease are mainly used for image denoising, image segmentation, 
modalities transfer, image enhancement, MRI aging and synthetic image generation/augmentation [57]. Amongst these 
approaches DC-GANs [58] has been the predominantly used GAN for addressing class imbalance and scarcity of 
datasets for AD [57].  

Mukherjee et al. [59] and Hu et al. [60] used DC-GANs to generate synthetic images and solve the class imbalance 
problem in Alzheimer's datasets. Mukherjee et al. used the DC-GANs to create new MRI scans, which they used to 
oversample the minority classes in the Kaggle Alzheimer's dataset. This resulted in a 4% increase in accuracy when 
using the ResNet50 [45] model. However, they could not train their DC-GANs for more than 200 epochs due to the 
issue of mode collapse (explained in Appendix B1), which could have led to even better results. They also did not train 
their DC-GANs separately for each class, which caused mixed features in the resulting images that could confuse their 
classifier. Furthermore, they did not analyse the quality of the synthetic MRIs before feeding to the ResNet50 model, so 
it was unclear whether it was the poor quality of the synthetic MRIs or the classifier which limited the effectiveness of 
their approach. 

In contrast, Hu et al. used DC-GANs to synthesize PET images to address class imbalance in the ADNI dataset, which 
had only 200 PET images. They trained their DC-GANs for 400 epochs and used Maximum mean discrepancy [61] and 
Structural Similarity Index Measure [61] (SSIM) to measure the similarity and diversity of their synthetic images. This 
resulted in a 7% increase in accuracy using the DenseNet [37] model. However, their results were not significantly 
improved because they used only 200 images and trained for only 400 epochs due to the issue of mode collapse in DC-
GANs. 

Islam et al. [62] also used DC-GANs with the ADNI dataset of 411 PET scans from 479 patients. They trained their DC-
GANs separately for each class for 500 epochs and used Peak Signal to Noise Ratio [61] and SSIM [61] to analyse the 
quality of their synthetic PET scans. Their approach led to a 10% increase in accuracy using a custom CNN. 

These GAN-based approaches suggest that GANs are expected to be superior to conventional methods because they can 
generate entirely new images that capture the full range of variations in minority classes, unlike conventional approaches 
that interpolate or oversample existing images. GANs can not only address class imbalance but also the scarcity of 
medical datasets in various medical problems. However, none of the approaches evaluated their effectiveness by 
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comparing their results to conventional methods on their datasets or published their synthetic datasets to address the 
scarcity of datasets. 

This research aims to address the issue of class imbalance and scarcity of datasets for AD by oversampling the minority 
classes in the train set of Kaggle Alzheimer’s dataset with synthetic MRIs generated using WGAN-GP [63] which 
overcomes the issue of “Mode Collapse” and will be discussed in detail in the methodology chapter. 
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3. Methodology

3.1  Introduction: 
This chapter details the methods used to tackle class imbalance in the Kaggle Alzheimer's Dataset, including the use 
of an experimental and simulation-based research approach. It also explains the process of synthesizing MRI scans and 
verifying the research hypothesis. Finally, Ethics related issues were also discussed. The code is available at [Link] 

3.2  Justification and Rationale: 
This project has incorporated insights gleaned from the extant literature to identify aspects that can be implemented for 
synthesizing the final product of this research. This chapter encompasses the fundamental framework behind generating 
the synthetic dataset as well as testing the hypothesis of this research study. This is being done by following a deductive 
(top down) research approach which has both experimental and simulative components. This research is deductive 
because it hypothesizes that the bigger balanced multiclass dataset of real and synthetic MRIs will result in improved 
overall performance and also much better performance on the minority classes. Additionally, each algorithm and 
method used in machine learning is based on specific assumptions about the characteristics of data, rendering them 
inapplicable to other types of data. Therefore, the results of this approach will be finally compared with the conventional 
approaches of addressing class imbalance which will validate the effectiveness of this approach. 

The experimental component in this research approach involves evaluating and comparing various pretrained models 
and a custom CNN to determine the best classifier for testing the research hypothesis and also for comparing the results 
of this approach with the conventional approaches to access its effectiveness. The simulation component involves using 
WGAN-GP [63] to generate new data and uncover patterns in the input dataset to produce synthetic MRI scans. The 
purpose of this simulation component is to test whether synthetic MRIs are an effective simulation of real ones. Using 
synthetic data is particularly useful in cases where the availability of real data is limited, or the process of collecting 
real data is expensive or time-consuming. Therefore, by combining experimental and simulation methodologies, the 
researchers can leverage the strengths of each approach and obtain more comprehensive insights into the problem of 
interest. The experimental component allows the researchers to establish the validity and reliability of the best 
classifier, while the simulation component enables them to test their hypothesis using synthetic data that mimics the 
properties of real data. 

3.3  Data selection and Description: 
The Kaggle Alzheimer’s Dataset [13] contains axial MRI scans of the brain in four classes: “No Impairment,” “Very 
Mild Impairment,” “Mild Impairment,” and “Moderate Impairment”. The number of subjects in each class were 100, 
70, 28, and 2, respectively. The dataset includes only axial MRI scans and no patient-specific information. This dataset 
was chosen for its severe class imbalance in the minority classes which made it ideal for hypothesis of this study, with 
3,200 images in “No Impairment,” 2,240 in “Very Mild Impairment,” 896 in “Mild Impairment,” and 64 in “Moderate 
Impairment.” Each image initially was of 176 x 208 pixels, but was resized and rescaled to 128 x 128 pixels for model 
training. Sample images from each class are illustrated below: 

Fig 3.3(1) Sample Images for “No Impairment” 

Fig 3.3(2) Sample Images for “Very Mild Impairment” 

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

Published by www.ijert.orgIJERTTH0025 - Copy

Thesis - 2023

https://1drv.ms/f/s!AtJXne0GhCl0bgeYboD-2-9syaw?e=9NC3kp
www.ijert.org
www.ijert.org


13 

 Fig 3.3(3) Sample Images for “Mild Impairment” 

      Fig 3.3(4) Sample Images for “Moderate Impairment” 

3.4  Requirements and Reproducibility: 
The deep learning models employed in this project were built using Keras API [64] of TensorFlow library [65] and 
were computationally expensive which required the use of high-end GPUs for their training. To fulfil this requirement, 
the Kaggle’s Tesla P100 (16 GB) GPU and Google Colab Pro Plus’s Tesla A100 (40 GB) GPU were utilized for 
synthesizing and classifying the MRIs.  
To ensure reproducibility of this research approach, the seed for the kernel, TensorFlow, and Image Data Generator 
[64] were fixed. Since the dataset involved in this research was small and heavily imbalanced, it was resulting in
inconsistent performance metrics (such as accuracy), each time the models were re-trained even if the seed was fixed.
To mitigate this and make the results reproducible, after the models had been trained, they were saved in form of “.h5”
file formats.

3.5 Rationale Behind WGAN-GP [63]: 
As discussed previously both in Appendix B2 and in the literature review, DC-GANs [36] just like GANs suffers from 
“Mode Collapse” and is very sensitive to hyperparameters and model architecture. WGANs-GP overcomes the issue 
of mode collapse and is less sensitive to model architecture and hyperparameter configurations because it uses 
Wasserstein distance as the loss function. Wasserstein distance is a more stable measure of the difference between 
generated and real data distributions than Binary Cross Entropy used in DC-GANs. It calculates the minimum cost of 
moving mass to convert data distribution from ℙ𝒈𝒈 to ℙ𝒓𝒓. The Wasserstein distance for the real data distribution ℙ𝒓𝒓 and 
the generated data distribution ℙ𝒈𝒈 is mathematically defined as the greatest lower bound (infimum) for any transport 
plan  

𝑾𝑾�ℙ𝒓𝒓,ℙ𝒈𝒈� = 𝐢𝐢𝐢𝐢𝐢𝐢
𝜸𝜸∈𝚷𝚷�ℙ𝒓𝒓,ℙ𝒈𝒈�

𝔼𝔼𝒙𝒙,𝒚𝒚~𝜸𝜸[‖𝒙𝒙 − 𝒚𝒚‖] 

Where 𝚷𝚷�ℙ𝒓𝒓,ℙ𝒈𝒈� denotes the set of all joint distributions 𝜸𝜸(𝒙𝒙,𝒚𝒚) whose marginals are respectively ℙ𝒓𝒓 and  ℙ𝒈𝒈. Using 
Kantorovich-Rubinstein duality 𝑾𝑾�ℙ𝒓𝒓,ℙ𝒈𝒈�  is equivalent to: 

𝑾𝑾�ℙ𝒓𝒓,ℙ𝒈𝒈� = 𝐬𝐬𝐬𝐬𝐬𝐬 
||𝒇𝒇||𝑳𝑳≤𝟏𝟏

𝔼𝔼𝒙𝒙~ℙ𝒓𝒓[𝒇𝒇(𝒙𝒙)] −   𝔼𝔼𝒙𝒙~ℙ𝒈𝒈[𝒇𝒇(𝒙𝒙)] 

where the supremum (maximize) is taken over all 1-Lipschitz functions. If this equation is multiplied by (-1) then the 
loss function (L) will be to find the infimum (minimize) which is what optimizers can work with.  

To ensure f is a 1-Lipschitz function, WGAN uses a simple weight clipping approach that restricts the maximum weight 
value in the discriminator/critic to a certain range determined by hyperparameter c. However, weight clipping can 
sometimes limit the model's capacity and hinder its ability to model complex functions, causing WGAN to generate 
poor samples or fail to converge. Large clipping parameters slow the rate at which weights reach their limit, making it 
harder to train the critic. On the other hand, small clipping parameters, especially in the presence of many layers or 
without batch normalization, can result in vanishing gradients. To resolve this issue, gradient penalty was introduced 
in WGAN-GP. A function f is 1-Lipschitz if its gradients have a norm of 1 everywhere. Rather than using weight 
clipping, WGAN-GP penalizes the model when the gradient norm deviates from its target norm value of 1. 
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𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒓𝒓𝑮𝑮𝑮𝑮𝑮𝑮𝒓𝒓′𝒔𝒔 𝑳𝑳𝑮𝑮𝒔𝒔𝒔𝒔 =  𝟏𝟏
𝒎𝒎

 ∑ −𝑫𝑫𝒘𝒘�𝑮𝑮𝜽𝜽(𝒛𝒛)�𝒊𝒊=𝒎𝒎
𝒊𝒊=𝟏𝟏  

𝑪𝑪𝒓𝒓𝒊𝒊𝑮𝑮𝒊𝒊𝒄𝒄′𝒔𝒔 𝑳𝑳𝑮𝑮𝒔𝒔𝒔𝒔 𝒘𝒘𝒊𝒊𝑮𝑮𝒘𝒘 𝑮𝑮.𝑷𝑷. = 𝔼𝔼
𝒙𝒙�~ℙ𝒈𝒈

[𝑫𝑫𝒘𝒘(𝒙𝒙�)] − 𝔼𝔼
𝒙𝒙~ℙ𝒓𝒓

[𝑫𝑫𝒘𝒘(𝒙𝒙)]
�������������������

𝑪𝑪𝒓𝒓𝒊𝒊𝑮𝑮𝒊𝒊𝒄𝒄′𝒔𝒔 𝑳𝑳𝑮𝑮𝒔𝒔𝒔𝒔 𝒊𝒊𝑮𝑮 𝑾𝑾𝑮𝑮𝑾𝑾𝑾𝑾

+ 𝝀𝝀 𝔼𝔼
𝒙𝒙�~ℙ𝒈𝒈

[(‖𝛁𝛁𝒙𝒙�𝑫𝑫𝒘𝒘(𝒙𝒙�)‖𝟐𝟐 − 𝟏𝟏)𝟐𝟐]
�������������������

𝑮𝑮𝒓𝒓𝑮𝑮𝑮𝑮𝒊𝒊𝑮𝑮𝑮𝑮𝑮𝑮 𝑷𝑷𝑮𝑮𝑮𝑮𝑮𝑮𝑷𝑷𝑮𝑮𝒚𝒚

 

Where 𝒙𝒙� = 𝑮𝑮𝜽𝜽(𝒛𝒛), 𝒛𝒛~𝒑𝒑(𝒛𝒛) (the input to the generator sampled from random noise of distribution p) and 𝑫𝑫𝒘𝒘 is the set 
of 1-Lipschitz functions. In contrast to DC-GANs, which uses a discriminator to classify generated images as real or 
fake, WGAN-GP replaces the discriminator with a critic that performs regression to score "realness" or “fakeness” of 
an image, instead of classification. For this reason, the critic in WGANs-GP does not use a "sigmoid" activation 
function in its last layer and assigns a score close to -1 for real images and close to 1 for fake images (as opposed to 1 
and 0, respectively, in DC-GANs).  

In DC-GANs, the generator learns less when the discriminator excels at distinguishing real and fake images since the 
discriminator's loss becomes saturated, leading to small gradients for the generator's parameter updates which can 
cause slow convergence or even non-convergence of the training. Conversely, WGANs-GP prevents the generator 
from producing samples far from the real data distribution as the critic becomes better at identifying real and generated 
data which is why critic is trained five times for each generator’s update, and gradient penalty is applied only to the 
critic's loss. This ensures the critic's gradient is continuous, which is critical for training stability. The generator's loss 
is based only on the critic's evaluation of generated samples and thus does not require gradient penalty 

Fig 3.5(1) WGAN-GP Network 

The benefit of using WGANs-GP over DC-GAN is that they have a more stable training process and are less sensitive 
to model architecture and hyperparameter configurations. Moreover, unlike Wasserstein Distance, Binary Cross Entropy 
in DC-GANs has nothing to do with the quality of images produced at each epoch. The Wasserstein distance in WGANs-
GP produces better results and stable training compared to DC-GANs, preventing mode collapse and generating high-
quality, diverse data that captures the real data distribution. 

3.6 Methodology Pipeline: 
A pipeline automates the creation of a final product, such as a machine learning model or a dataset [66]. This study used 
a four-step pipeline. First the dataset was split into train and test sets for model training and evaluation respectively. 
Then multiple pre-trained models and a custom CNN were trained, evaluated and compared to find the best classifier. 
Subsequently, synthetic images were generated using WGAN-GP and evaluated for synthesizing the final product and 
finally the best classifier was used to verify the study's hypothesis, ensuring the credibility of the final product and the 
effectiveness of this methodology.  

Fig 3.6(1) Methodology Workflow 
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3.7 Train Test Split: 
In machine learning, the test train split technique divides a dataset into a training set for model training and a testing set 
for performance evaluation on unseen data [67]. The split is usually random with a certain percentage assigned to each 
set. It helps to detect overfitting, underfitting, and if the performance is unsatisfactory, the model can be fine-tuned, 
retrained and re-evaluated. In this project, the Kaggle Alzheimer's dataset was split into 80% for training and 20% for 
testing, randomly for each class. 

Fig 3.7(1) Distribution of images in each class after train-test split 

3.8  Finding The Best Classifier: 
This section involves the following steps for identifying the best performing classifier, which will be later used for 
testing the hypothesis of this research:  

Fig 3.8(1) Workflow for finding the best classifier 

3.8.1 Image Pre-Processing: 
1. Using Keras’s Image Data Generator class [64], “train_generator” and “test_generator” objects were created

to pre-process images in train and test sets separately.
2. The parameter “target_size” was set to (128,128) for resizing images to 128x128 pixels which ensured that all

input images will have the same dimensions. This was important because neural networks require fixed-sized
input images.

3. The parameter “rescale” was set to (0,1) to avoid the issue of exploding gradients and improving performance
as many activation functions are designed to work between the values of 0 and 1.

4. The parameter “color_mode” was set to “rgb” so that the grayscale MRIs are read as 3 channel RGB images.
This was important as pretrained models expect a RGB image as input.

5. The parameter “class_mode” was set to “categorical” to convert the class labels into one hot encoded vector
which is necessary for softmax activation function used for multiclass classification.

6. The parameter “batch_size” was set to 32 which converted images to batches of 32 image arrays. This was
important for CNNs because it allows for efficient processing of large datasets, parallel computing using
GPUs, and regularization of the training process.

7. The parameter “shuffle” was set to “False” so that each time the multiple models are trained or evaluated on
train and test sets, the images in those sets are arranged in the exactly same order which will result in fair
evaluation and comparison.
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3.8.2 Model Building: 
Pre-trained models such as DenseNet169 [35], InceptionV3 [68], ResNet50 [45], Xception [69], EfficientNetB3 [70] 
and VGG19 [37] were built using the following steps: 
1. Each of these pre-trained models were imported from Keras with “ImageNet” weights as the base model, with their

top layers removed by setting the parameter “include_top” = False.
2. Then all the layers of the base model were set to be non-trainable so that the optimizer won’t update the weights

of these layers and they will retain the “ImageNet” weights
3. Then a dense layer (output layer) with 4 units was added with “softmax” activation function to output the class

probabilities for each of these 4 classes.
Then custom CNN was build using the following architecture: 

Fig 3.8.2(1) Architecture of custom CNN 
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3.8.3 Model Training: 
1. All of the pretrained models and custom CNN were compiled with Adam [71] as the optimizer with learning rate

of 0.001, “Accuracy” and “F1 Score” as the metrics that will be computed after each epoch and “Categorical Cross
Entropy” as the loss function since multiclass classification was being performed.

2. For callbacks, early stopping with patience = 10 and model checkpoint were implemented, both of which monitored
validation loss. Early stopping was implemented to prevent the models from overfitting and patience was set to 10
because it’s a thumb rule in machine learning that patience should be 10% of the total epochs [72]. Model
checkpoint was implemented so that at the end of training each model will be loaded with those weights for which
its validation loss was the minimum.

3. Finally, all of the pretrained models and the custom CNN were trained for 100 epochs by updating their weights
using the training data and validating their performance after each epoch on the test data.

3.8.4 Model Evaluation: 
After the models had been trained, they were evaluated on the fixed test dataset. Their resulting predictions (class 
probabilities from the output layer’s softmax activation function) were converted into class labels using the 
"numpy.argmax" function. After this step, using these class labels, the overall performance of each of these classifiers 
were compared by computing Balanced Accuracy [73] and Matthews Correlation Coefficient [74] which revealed the 
best performing classifier. Finally, the models were saved in ".h5" format for the sake of reproducibility of results. 

3.9  Synthetic Image Generation: 

Fig 3.9(1) Steps for producing the synthetic MRIs dataset 
3.9.1 Image Pre-Processing: 
Images for each class were resized to 128 x 128 pixels and rescaled to a range of (-1,1) to ensure that the output of the 
generator (synthetic images) and the input to the critic (real and synthetic images) are in the same range, because the 
generator typically outputs values between -1 and 1 using a “tanh” activation function in its output layer. If the real 
images are not of the same scale as of the synthetic images, the critic may have difficulty learning to distinguish 
between real and synthetic/fake images, and WGAN-GP may not converge or produce high-quality results.  

3.9.2 Building WGAN-GP: 
The critic and generator were built as per the proposed guidelines in the WGAN-GP paper [63]: 

• Batch Normalisation [75] was used in the generator but not in the critic. Although, batch normalisation can
stabilise training, it was omitted in the critic because it changes the form of critic’s problem from mapping a
single input to single output, to mapping an entire batch of inputs to a batch of outputs. This means that critic’s
gradient is calculated over entire batch of inputs and not for individual inputs due to which the penalized
training objective which penalizes the norm of the critic’s gradient with respect to each input independently is
no longer valid. Instead, batch normalisation layer was replaced with dropout (30%) in critic which prevents
overfitting and improves generalization

• Adam (lr = 0.0001, ß1 = 0, ß2 = 0.9) was used as the optimizer because it converges faster and reduces the
chances of mode collapse [63].

• In gradient penalty term, lambda = 10 was used as it was found to work well in all their experiments with
different datasets and ImageNet CNNs

• Second derivative of the activation function is needed to update the discriminator's parameters. Non-smooth
functions like ReLU cause undefined gradients, making it hard to optimize. Therefore, Leaky ReLU with a
slope of 0.2 was used as it allows non-zero gradients, making it easier to train WGAN with gradient penalties.

• The "Tanh" activation function is used in the last layer of the generator to scale the output to the range of [-1,
1] which generates a bigger range of data than 0 to 1, making it easier for the critic (Wasserstein distance) to
distinguish between real and fake samples. Additionally, "Tanh" is symmetric and differentiable, which helps
in reducing the likelihood of vanishing gradients during training.

• “Sigmoid” activation was omitted in the last layer of critic as it is no longer a classifier in WGAN-GP and it
assigns a score close to -1 for real images and score close to 1 for fake images (instead of 1 and 0 respectively)
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Fig 3.9.2(1) Critic’s Architecture

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

Published by www.ijert.orgIJERTTH0025 - Copy

Thesis - 2023

www.ijert.org
www.ijert.org


19 

Fig 3.9.2(2) Generator’s Architecture 
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3.9.3  Training WGAN-GP: 
WGAN-GP was trained separately for each minority class (only using the train images) so that it can learn the 
distribution of images and focus on unique characteristics in each class separately and does not mix features 
corresponding to different classes in the synthetic images. WGAN-GP was not trained for majority class i.e., “No 
Impairment” (2560 train images) because the goal was to oversample the minority classes to be of the same size as of 
the majority class using synthetic images. 
Batch size of 64 was used for “Very Mild Impairment” (1792 train images) and “Mild Impairment” (717 train images) 
because it balances the trade-off between training stability and computational efficiency. With larger batch size, the 
training could be faster, but it may also lead to less accurate gradients due to the averaging of noise and the potential for 
vanishing gradients, thus, resulting in underfitting. Batch size of 8 was used for “Moderate Impairment” as it only had 
52 train images. With a smaller batch size, the generator and critic networks were updated more frequently and with 
more variation in the input data, which would lead to a more robust and generalizable model.  
The generator is supposed to synthesize MRIs of dimension 128 x 128 due to which Latent Random Vector (Gaussian 
Noise) of dimension 256 was chosen. This gave generator much more information to work with, allowing it to capture 
more complex features and generate high quality images. The generator and critic were compiled with Adam optimizer 
(lr = 0.0001, ß1 = 0, ß2 = 0.9) and their respective loss functions.  
Since, both of them learn in an adversarial manner, they had to be trained using a custom training loop and a custom 
callback where the custom training loop trains the discriminator first but for each step of the generator, the critic has to 
be trained for 5 steps as explained previously in section 3.5 where the gradient penalty term was added to the critic’s 
loss but not to the generator’s loss. 

Fig 3.9.3(1) Algorithm for training WGAN-GP [63] 
The custom callback does the following: 

1. At the end of each epoch, it computes the FID Score [76] between a batch of randomly selected real images and
a batch of synthetic images generated by the current generator for that epoch. Then it prints the FID Score for
that epoch and appends current FID Score in the “fid_scores” list

2. If the FID Score for that epoch is less than 5 then it would save the current generator with the “class_name”,
“current_epoch” and “current_fid” in its name as a “.h5” file.

After training WGAN-GP for 2,000 epochs for each class, the latest epoch which corresponded to the minimum FID 
Score was computed and the corresponding generator i.e., the best generator so far throughout the training was loaded, 
to generate and visualize 64 synthetic images for that class. Finally, at the end of the training, FID Scores vs Epochs 
was plotted and WGAN-GP Loss vs Epochs were plotted by retrieving “fid_scores” list and WGAN-GP’s loss history 
from the custom callback. 
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3.9.4  Synthetic Image Quality Analysis: 
Assessing the quality of synthetic images was crucial in order to ensure the validity of hypothesis verification. Without 
evaluating the quality of synthetic images, it is impossible to determine whether the hypothesis has failed due to incorrect 
assumptions or due to the low quality of images. To evaluate the quality of synthetic images; using the best generator 
for each class, the required number of synthetic images for matching the size of the majority class were generated and 
saved as ".jpg" files in their corresponding folders. Then FID score [76], SSIM [61], PSNR [61], SD [61], and Seaborn's 
Distplot [77] were computed between real and synthetic images for each class, and the results were documented and 
tabulated. If these metrics indicated that the quality is not good enough as discussed previously in Appendix B3, for 
some class, then WGAN-GP was re-trained for that particular class only. 

3.10  Verifying The Hypothesis: 
The synthetic images for each class were merged with the real ones to oversample and match the size of the majority 
class. The resulting distribution is illustrated in the following figure:  

Fig 3.10(1) Image distribution after combining synthetic and real MRIs in train set (Real Moderate Impairment = 52) 

Fig 3.10(2) Workflow for Hypothesis Testing 

The best performing classifier from section 3.8 was trained on this combined train dataset and was evaluated on the test 
dataset which had been kept fixed since the train-test split. Balanced Accuracy and Matthews Correlation Coefficient of 
this classifier were then compared with those of the best classifier from section 3.8 to assess overall changes in 
performance. Additionally, the performance on the minority classes was accessed using confusion matrices. These 
evaluations verified the hypothesis of this research.  

If the overall performance and the performance on the minority classes is found to be improved then the combined 
dataset will be published on Kaggle. To further validate the effectiveness of this approach, the results were compared 
with those of conventional approaches, including Oversampling, Image Augmentation, SMOTE and cost-sensitive 
learning/class weighting. All of the models produced in this section were also saved as “.h5” files. Finally, the results 
for both testing the hypothesis and validating the effectiveness of this approach were tabulated and documented. 
Following parameters were used in Image Data Generator for Augmentation: 

Table 3.10(3) Parameters for Image Augmentation 

Parameters Range/Value
rotation_range 20

brightness_range [0.8,1.2]
zoom_range [0.99, 1.01]

fill_mode nearest
horizontal_flip TRUE
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4. Results and Discussion

4.1 Results for finding the best classifier 
The overall performance of seven different models for classifying Alzheimer's MRIs was evaluated based on their 
balanced accuracies (BA) [73] and Matthew’s Correlation Coefficients (MCC) [74]. The models compared were 
Custom CNN, DenseNet169 [35], VGG19 [37], Xception [69], InceptionV3 [68], EfficientNetB3 [70], and ResNet50 
[45]. Table 4.1(1) summarizes their main results and these were the main highlights: 
• Among these models, the Custom CNN achieved the highest balanced accuracy of 87.04% and MCC of 82.61%,

outperforming all other models. The DenseNet169 model achieved the second-highest balanced accuracy of
82.13%, but its MCC was comparatively lower at 67.11%.

• The VGG19 model obtained a balanced accuracy of 74.45% and an MCC of 58.85%, while the Xception model
showed a balanced accuracy of 64.33% and an MCC of 56.02%. The InceptionV3 model had a balanced
accuracy of 59.66% and an MCC of 45.81%.

• The performance of the EfficientNetB3 and ResNet50 models was found to be inferior to that of the other
models, with a balanced accuracy of 31.48% and 28.31%, respectively, and MCCs of 13.21% and 15.52%,
respectively.

Overall, the Custom CNN model outperformed all pretrained models and demonstrated the best performance in terms 
of both BA and MCC, while the EfficientNetB3 and ResNet50 models showed the poorest performance. 

Model Balanced Accuracy (%) Matthews Correlation Coefficient (%) 
Custom CNN 87.04 82.61 
DenseNet169 82.13 67.11 

VGG19 74.45 58.85 
Xception 64.33 56.02 

InceptionV3 59.66 45.81 
EfficientNetB3 31.48 13.21 

ResNet50 28.31 15.52 
Table 4.1(1) 

4.2 Discussion for finding the best classifier 
The results indicated that the Custom CNN model outperformed all pretrained models. While transfer learning is often 
suggested as a viable approach for dealing with limited dataset sizes, allowing pre-trained models to be fine-tuned for 
better generalization on smaller datasets, this study did not find this to be the case. Even though the DenseNet169 model 
showed decent performance which was similar to that of custom CNN in terms of BA (82.13% vs 87.04% respectively), 
its MCC was significantly lower than that of custom CNN (67.11% vs 82.61% respectively). There can be two possible 
reasons for this:  

1. The dataset was heavily imbalanced and even though Balanced Accuracy (BA) focusses on both positives as
well as the negatives (unlike the F1 Score), it can still result in a high accuracy by simply having a higher score
for the majority class. MCC, on the other hand, took into account the true positives, true negatives, false
positives, and false negatives of all four classes and provided a more balanced measure of performance which
made it a more sensitive metric as small differences in performance can be more pronounced in MCC than in
BA.

2. All of the pretrained models used “ImageNet” weights and were too complex for this dataset due to which they
could not generalise well on MRI data and ended up overfitting. On the other hand, the custom CNN was not a
very complex architecture and was trained from scratch to only learn patterns specific to this use case.

4.3  Results for analysing the quality of synthetic images 
In this study, the minority classes in the Kaggle Alzheimer’s dataset i.e., “Very Mild Impairment (VMI)”, “Mild 
Impairment (MI)” and “Moderate Impairment (MoI)” were oversampled with synthetic images generated by WGANs-
GP to be of the same size as of the majority class “No Impairment” (2560).  The quality of these images was evaluated 
and analysed using metrics like FID Score (the closer to 0 the better) [76], SSIM index (the closer to 1 the better) [61], 
PSNR (ideally between 30 dB to 50 dB) [61] and SD (the closer to 0 the better) [61]. The results are summarized in 
Table 4.3(1). 

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

Published by www.ijert.orgIJERTTH0025 - Copy

Thesis - 2023

www.ijert.org
www.ijert.org


23 

Fig 4.3(1): Samples of synthetic Very Mild Impairment MRIs 

Fig 4.3(2): Samples of synthetic Mild Impairment MRIs 
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Fig 4.3(3): Samples of synthetic Moderate Impairment MRIs 

FID SSIM PSNR SD Synthetic MRIs Real MRIs Real + Synthetic 
Very Mild Impairment (VMI) 0.07 0.97 33.39 0.05 768 1792 2560 

Mild Impairment (MI) 0.15 0.96 29.93 0.07 1843 717 2560 
Moderate Impairment (MoI) 0.17 0.98 32.59 0.00 2508 52 2560 

Table 4.3(1) 

Unlike the FID Score which can be computed over the entire batch of all real and synthetic images at once, the SSIM, 
PSNR an SD could only be computed between an image and its reference image. Since the size of real MRIs was not 
the same as of the synthetic ones, there was not a reference real MRI for each and every synthetic MRI. Therefore, 
SSIM, PSNR an SD were computed between the mean of real and the mean of synthetic MRIs for each class. 

Fig 4.3(4) Mean of Real vs Synthetic MRIs for each minority class. 
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Additionally, Seaborn's Distplot was used to perform a qualitative analysis and comparison of the distribution of pixels, 
including range, shape, and central tendency, between real and synthetic MRIs for each minority class. The subsequent 
figures explicitly illustrate that the distribution of real and synthetic MRIs for each minority class is overlapping (purple 
colour indicates overlap as blue + red = purple):  

 Fig 4.3(5) Distribution of pixels in Real and Synthetic Images for VMI class 

Fig 4.3(6) Distribution of pixels in Real and Synthetic Images for MI class 

Fig 4.3(7) Distribution of pixels in Real and Synthetic Images for MoI class 
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4.4 Discussion for analysing the quality of synthetic images 
This section appreciates the quality of the final product of this research i.e., the synthetic Alzheimer’s MRIs dataset. 
FID Score is a statistical metric which is influenced by the number of images it is computed on. This is because it uses 
mean and covariances of feature embeddings of images, both of which are influenced by the number of samples (higher 
the number of samples the more precise are the means and covariances). This is why during training of WGAN-GP, 
since the FID Score was calculated only for a batch of 64 images for “Very Mild Impairment” and “Mild Impairment” 
class and a batch of 8 images for “Moderate Impairment” class it resulted in FID Score of 4-5 but when the FID Score 
was computed over hundreds and thousands of images as shown in Table 4.3(1), it resulted in a mean FID Score of 0.13 
(over all three minority classes) which is very close to zero (ideal value). This indicates that both the quality and diversity 
of synthetic MRIs were as good as the real ones. 
The set of mean real and mean synthetic MRIs for each minority class as shown in figure 4.3(1) look very similar to 
each other. These set of images were used to calculate SSIM, PSNR and SD. The mean SSIM of 0.97 indicate that the 
real and synthetic MRIs are perceptually very similar to each other in terms of luminance, contrast and overall structure. 
The mean PSNR of 32 dB which is well between its ideal range of 30 dB and 50 dB indicates that the synthetic MRIs 
were as good as the real ones and the mean Sharpness Difference of 0.04 also indicates that there was almost no loss in 
sharpness during generation of synthetic images. 
Finally, the results of all these metrics over the entire batch justifies that the synthetic MRIs were as good as the real 
ones but not completely identical which proves that they are indeed new images which satisfies the goal of synthetic 
image generation. Furthermore, Seaborn’s Distplots in figures 4.3(5), 4.3(6) and 4.3(7) clearly illustrate that the 
distribution of synthetic MRIs for each minority class was almost completely overlapping with the distribution of Real 
MRIs for those particular classes which means that the synthetic MRIs were as diverse as the images in the original 
Kaggle Alzheimer’s dataset. This explains why the mean FID Score over all three minority classes was so close to its 
ideal value of 0. 
Now, since the quality of synthetic dataset is found to be good enough. This allows the researcher to verify the hypothesis 
in a fair and transparent manner.  

4.5 Verifying the hypothesis 
Since Custom CNN was found to be the best so far amongst all other classifiers, it was used to verify the hypothesis of 
this research. The performance of Custom CNN was compared when it was trained on Train Set of 5,121 MRIs vs 
Combined Train Set of 5,121 Real and 5,119 Synthetic MRIs. The results for overall performance in terms of Balanced 
Accuracy and Matthew’s Correlation Coefficient are summarised in Table 4.5(1). 

Table 4.5(1) 

These results clearly show that there was 11.77% increase in Balanced Accuracy and approximately 15% increase in 
MCC both of which clearly indicate significant improvement in overall performance.  

Balanced Accuracy (%) MCC (%)
(5121 Real MRIs) Train Set 87.04 82.61

(5121 Real + 5119 Synthetic MRIs) Train Set 98.81 97.56
Custom CNN
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Fig 4.5(1) AUC-ROC Curves and PR Curves with AUPRC for both Real and Real + Synthetic MRIs 

AUC-ROC Curves: 
Custom CNN when trained on Real MRIs only, resulted in AUC scores of 0.87, 0.9, 0.76 and 0.96 for No Impairment, 
Very Mild Impairment, Mild Impairment and Moderate Impairment respectively and an overall ROC-AUC score of 
0.87. Whereas, Custom CNN when trained on combined train set of Real and Synthetic MRIs resulted in AUC scores 
of 0.99, 1.0, 0.99 and 0.99 for No Impairment, Very Mild Impairment, Mild Impairment and Moderate Impairment 
respectively and an overall ROC-AUC Score of 0.99.  

PR Curves: 
Custom CNN when trained on Real MRIs only, resulted in AUPRC scores of 0.8, 0.86, 0.59 and 0.78 for No Impairment, 
Very Mild Impairment, Mild Impairment and Moderate Impairment respectively. Whereas, Custom CNN when trained 
on combined train set of Real and Synthetic MRIs resulted in AUPRC scores of 0.99, 0.98, 0.95 and 1.0 for No 
Impairment, Very Mild Impairment, Mild Impairment and Moderate Impairment respectively.  

This verifies, as discussed previously in Appendix A4, that PR Curves are more sensitive to class imbalance than AUC-
ROC curves. But both of these curves don’t explicitly represent the number of misclassifications on each minority class 
and the overall improvement in performance on the minority classes which is why the performance on the minority 
classes was compared using Confusion Matrix which is illustrated in Figure 4.5(2) and Figure 4.5(3). 
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Fig 4.5(2) Confusion Matrix for Custom CNN trained only on Real MRIs 

Fig 4.5(3) Confusion Matrix for Custom CNN trained on Real + Synthetic MRIs 

These confusion matrices above clearly illustrate that when custom CNN was trained just using the real MRIs it made 
no False Negatives (misclassifications) on the “No Impairment” (Majority Class), 77 False Negatives on “Very Mild 
Impairment”, 62 False Negatives on “Mild Impairment” and no False Negatives on “Moderate Impairment”. But when 
the same custom CNN was trained on the combined train set of real and synthetic MRIs, it made 7 False Negatives on 
“No Impairment”, 9 False Negatives on “Very Mild Impairment”, 3 False Negatives on “Mild Impairment” and no False 
Negatives on “Moderate Impairment” classes. This indicates 88.31% improvement on “Very Mild Impairment” class 
and 95.45% improvement on the “Mild Impairment” class. This means an overall 91.4% improvement on the minority 
classes at the cost of 1% reduction in performance on the majority class. Therefore, the overall 11.77% increase in 
Balanced Accuracy, 15% increase in MCC and 91.4% improvement on the minority classes proves that the hypothesis 
is correct and this approach has successfully addressed the class imbalance problem in the Kaggle Alzheimer’s dataset. 
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4.6 Discussion for verifying the hypothesis 
In section 4.5 of the present research, the results clearly demonstrate that the hypothesis is correct and the research has 
been successful, with an overall improvement of 11.77% in Balanced Accuracy and an 15% improvement in Matthew's 
Correlation Coefficient. As previously discussed in the same section, the confusion matrices depicted in figure 4.5(2) 
and fig 4.5(3) indicate a 91.4% improvement in the minority classes, at the expense of a 1% decrease in performance on 
the majority class, i.e. "No Impairment". However, this is not an issue since misclassifying a person with "Very Mild 
Impairment" or "Mild Impairment" as "No Impairment" is much more undesirable than misclassifying someone with 
"No Impairment" as Mild or Very Mild Impaired. The credit goes to WGAN-GP for overcoming mode collapse and 
generating synthetic images which not only successfully imitated the real MRIs in terms of quality and diversity, but 
also provided the custom CNN with new patterns to learn from. This resulted in improved overall performance and 
effectively addressed the class imbalance problem in the Kaggle Alzheimer's Dataset. Thus, the credibility of the 
synthetic dataset has been established, which gives a green signal for it to be published [Link]. 

4.7  Analysing the effectiveness of this methodology 
To further analyse the effectiveness of this approach, the results of this approach were compared with the results of 
conventional approaches of Oversampling, Image Augmentation, SMOTE, and Cost Sensitive Learning or Class 
Weighting. The results of these experiments are summarized in Fig 4.7(1) and the main highlights are the following: 

• The Synthetic Images approach achieved the best performance, with a balanced accuracy of 98.81% and a
Matthew’s correlation coefficient of 97.56%.

• SMOTE also performed well, with a balanced accuracy of 93.85% and a Matthews correlation coefficient of
90.72%.

• Regular Oversampling and Class Weighting or Cost Sensitive Learning had similar performances, with balanced
accuracies of 93.73% and 94.29%, respectively, but lower Matthew’s correlation coefficients of 85.18% and
84.05%, respectively.

• The Augmentation approach had the lowest performance among the evaluated approaches, with a balanced
accuracy of 52.88% and a Matthews correlation coefficient of 44.16%.

These results show that machine learning approaches can significantly improve the performance of classification models 
on imbalanced datasets. Overall, the evaluation results suggest that the Synthetic Images approach is the most effective 
and superior approach followed by SMOTE for addressing class imbalance for this use case. Although not as effective 
as the prior two, Regular Oversampling and Class Weighting can also provide reasonable results. However, 
Augmentation was not found suitable for this dataset, at least not without careful selection of the augmentation 
techniques and parameters. In conclusion, the choice of the most suitable approach depends on the specific 
characteristics of the dataset and the classification task at hand. 

Approach Balanced Accuracy (%) Matthews Correlation Coefficient (%) 
Synthetic Images 98.81 97.56 

SMOTE 93.85 90.72 
Regular Oversampling 93.73 85.18 

Class Weighting / Cost Sensitive Learning 94.29 84.05 
Image Augmentation 52.88 44.16 

Fig 4.7(1) Comparison of our approach with conventional approaches 

4.8 Discussion for analysing the effectiveness of this methodology 
In Section 4.7, the study concluded that oversampling with synthetic images generated by WGAN-GP was the most 
effective method for addressing class imbalance. While SMOTE generates synthetic samples by interpolating between 
existing samples of the minority class and has been effective, it has limitations such as generating samples that are too 
similar to existing ones, leading to overfitting and reduced generalization performance, and not capturing the underlying 
data distribution if the minority class is complex or has high variability. In contrast, synthetic images generated by 
WGAN-GP were more diverse and realistic, capturing the underlying data distribution of the minority class. This 
increased diversity enabled the model to learn more robustly which can generalise the new patient’s unseen data better, 
thus resulting in improved performance. Generating synthetic MRIs is also better than any other technique because it 
produces samples that are not direct copies of existing ones, increasing variation and diversity in the train set.  
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Although regular oversampling improved overall performance, it did not perform as well as synthetic images and 
SMOTE because it did not improve image diversity, as it simply replicated existing samples, which reduced its ability 
to generalise. Class weighting, which assigned higher weights and penalized mistakes on minority class samples more, 
improved overall performance similar to regular oversampling but could not perform as well as synthetic images and 
SMOTE because it did not create new samples or capture the underlying data distribution of the minority class.  
Image augmentation parameters, as described in methodology chapter, was the least effective approach amongst all 
approaches and resulted in even poorer performance than the baseline custom CNN model, possibly because the 
augmented images introduced too much noise or variability in the training data, making it more difficult for the model 
to learn underlying patterns and generalize. Additionally, the augmentation techniques used may not have been 
appropriate for the specific dataset or task, introducing unrealistic or irrelevant variations that negatively impacted the 
model's performance. Finally, it is possible that the model architecture or hyperparameters were not suitable for the 
augmented data and could not effectively learn from the augmented samples. 

4.9 Comparison of results with other GAN based approaches 
Roy et al. [83] utilized federated GAN-based biomedical image augmentation and classification to tackle class 
imbalance in the Kaggle Alzheimer's dataset. Their approach achieved a significant improvement in accuracy, increasing 
it from 86% to 97.81%. For image generation, they used DC-GAN, and for classification, they used VGG16, both with 
fed-focal loss for imbalanced data instead of binary cross entropy. Similarly, Jain et al. [84] improved accuracy from 
74% to 87% on the same dataset using their own custom CNN and DC-GANs. Datta et al. [85] also implemented DC-
GANs to address class imbalance in the Kaggle Alzheimer's dataset and improved the balanced accuracy from 57.5% to 
79%. Lastly, Mukherjee et al. [59] employed DC-GANs using the same dataset and improved accuracy from 69% to 
82% with ResNet50. By achieving an increase in balanced accuracy from 87% to 98.81%, this approach exhibits the 
superiority of both its methodology and final product over other DC-GAN-based methods that have been utilized on the 
same dataset. While many of these other approaches have reported their classification results, they have neglected to 
include any analysis of image quality within their research. 

Fig 4.9(1) Comparison of results with other GAN based approaches on Kaggle Alzheimer’s Dataset 
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4.10  GRAD-CAMs [14] (A cherry on top) 
Since, the research approach has been successful in addressing class imbalance and the final product has been found 
credible, the best performing classifier so far i.e., custom CNN with BA of 98.8% and MCC of 97.56% was employed 
to implement grad cams. 

Fig 4.10(1) GRAD CAMs 
This was done by extracting the gradients from the last convolutional layer, for each image, which were then overlapped 
on top of that particular image in form of a heatmap to visualize which parts of the image did the classifier focussed on, 
in order to make its classification decisions. 
Figure 4.10(1) clearly illustrates the regions responsible for classification in a hierarchy using a colour-bar in which 
“red” indicates the region where the classifier focused the most followed by “orange”, “yellow”, “green” and finally 
“blue” indicating the regions where it focussed the least. These images were classified with 100% accuracy which can 
also be seen by the ground truth and the predicted label on top of each image. 
Researchers and medical professionals can benefit from using grad-cams (explainable AI) to identify the indicators of 
Alzheimer’s for each stage. Additionally, in the future, if an application is developed that automates the diagnosis of 
Alzheimer’s disease, clinicians could then utilize the grad-cam feature in the application to interpret and confirm the 
classification decisions for each person's MRI. 
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5. Evaluation

5.1 Introduction 
This chapter assesses the results of the research study and presents a personal reflection of the researcher's experience 
throughout the process. 

5.2 Evaluation of main research approach and findings 
The ongoing research has revealed that the biggest issue in diagnosing Alzheimer's is the scarcity of datasets and class 
imbalance in those datasets. The literature review explains that many researchers have attempted binary classification, 
but this is not appropriate for medical datasets, making multiclass classification essential. 

To address the issue of class imbalance, many researchers have utilized machine learning techniques, such as 
oversampling, SMOTE, cost-sensitive learning, and image augmentation. In addition, transfer learning has been 
proposed as a potential solution. Some researchers have also used generative algorithms, such as GANs [56], Cycle 
GANs [78], and DC-GANs [58], to generate synthetic images for either enhancing image quality or synthesizing Deep 
Fake images to solve class imbalance. Many of the studies reviewed did not provide clear information on whether they 
trained their GAN models for each individual class or not, nor did they specify whether images from the test dataset 
were included in training their GAN. These studies also neglected to use metrics that are specifically designed for 
imbalanced datasets, nor did they compare their results to those of conventional approaches. Additionally, most of the 
studies utilized DC-GANs for image synthesis, but only trained them on a small number of images and that too for less 
than 1,000 epochs. Lastly, some studies failed to report any measures of image quality for their synthetic images. 

This study found that transfer learning was not a viable approach for classifying images in Kaggle Alzheimer's dataset 
because the "ImageNet" weights made it hard for pre-trained models to generalize on MRI scans for Alzheimer's, leading 
to overfitting. Instead, custom CNN outperformed all other pretrained models because it learned patterns specific to this 
use case.  

The initial plan was to go with DC-GANs for synthesizing MRIs, but the study found that they suffer from mode 
collapse, which limited researchers to work with just a few hundred images, that too for limited epochs for which they 
can be trained. In contrast, WGAN-GP [63] overcomes this issue of mode collapse, providing a more stable training 
process thus being less sensitive to model architecture and hyperparameter configurations. Through experimentation, 
the study found that batch normalization layers in the generator and dropout layers in the critic can make the WGAN-
GP converge faster and improve the quality of synthetic images. 

Unlike most research studies that did not use synthetic image quality metrics, this study found appropriate metrics 
through literature, not only for analysing the quality of synthetic images but also for evaluating classifiers on heavily 
imbalanced datasets. The study found that Matthew's Correlation Coefficient provided a more balanced measure of 
performance by taking all four categories in the confusion matrix into consideration, making it a more sensitive metric 
as small differences in performance can be more pronounced in MCC than in Balanced Accuracy. Furthermore, the study 
found that FID score can be used not only to assess the quality and diversity of synthetic images but also to compare 
epochs with each other while training GAN, leading to identifying the epoch that corresponded to the best generator for 
that particular class. 

However, training WGAN-GP posed many difficulties as it is a combination of two different architectures that have 
different loss functions and must be trained adversarially. Therefore, WGAN-GP had to be trained using a custom 
training loop, a custom callback, and a custom metric (FID). One of the major issues with training WGAN-GP was that 
it is computationally very expensive, and thus, it could not be trained on Kaggle GPU as Kaggle's kernel disconnects 
automatically after 12 hours of training. As a result, it had to be trained on Google Colab Pro+. Furthermore, saving the 
generator after each epoch was not feasible, as it would have accounted for 582 GB of space since each generator was 
of 298 MB. Therefore, to mitigate this, only those generators were saved for which FID Score was less than 5. This 
threshold was found appropriate for this use case by experimentation. 

Finally, it was found that the research has been successful and it was also found that the oversampling with synthetic 
images is the most effective for addressing class imbalance problem as compared to oversampling, SMOTE, cost 
sensitive learning and image augmentation. Moreover, it was also found that image augmentation, instead of improving 
overall performance and solving class imbalance, ended up resulting in even poorer performance as compared to the 
baseline. This was because either because it introduced unrealistic or irrelevant variations that negatively impacted the 
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model's performance in its ability to learn patterns and generalise or because custom CNN’s architecture or 
hyperparameters were not suitable for the augmented data and could not effectively learn from the augmented samples. 

5.3 Ethical, Legal, Social, Professional and Security Issues 
Ethical considerations are crucial in any research, weighing both benefits and drawbacks. While synthetic images 
generated by WGAN-GP were of high quality, researchers should be aware that conclusions derived from this synthetic 
dataset may not resemble the real world since these were not verified by a radiologist. This concern will be addressed 
by including a statement in the dataset description when the synthetic dataset is made public on Kaggle. Since, both 
Kaggle Alzheimer’s Dataset and the synthetic dataset did not resemble any human’s identity or their personal 
information, there were no privacy concerns. As the study did not involve human participation or personal information 
collection, it did not address social issues either. Furthermore, the study did not involve any unfair data use or processing 
and used an open-source dataset, therefore, there are no legal or security risks as no data is being collected from 
individuals and amyloid imaging is not restricted by GINA [78] 

5.4 Personal Reflection 
Using machine learning techniques to solve real-world problems is fascinating. Initially planning to use DC-GANs, 
research papers led to the conclusion that WGAN-GP should be used for synthetic image generation. Generating 
synthetic MRIs for Alzheimer's with WGAN-GP was both exciting and daunting, but provided ample opportunities to 
learn. 

Over several months, the researcher immersed themselves in research papers, tried various approaches, and learned from 
the limitations of others' work. Countless hours were spent refining techniques, tweaking parameters, and analysing 
results. It was a steep learning curve, but the researcher persisted, knowing that the potential impact of this research 
could be significant. The project's success was a significant achievement because of its complexity and meticulousness. 
It involved writing and implementing a substantial amount of code from scratch, involving object-oriented 
programming. 

Along the way, the researcher learned valuable lessons and skills that will help in future projects of this scale, including 
generating synthetic images which is very valuable as it leads to overcome the scarcity of medical data, increase accuracy 
and robustness of machine learning models, reduce research costs and time, that too without causing any privacy 
concerns. The researcher also learned the importance of understanding existing research limitations and creating 
something novel on top of it, as well as the value of persistence and project management. 

In conclusion, the journey of learning a new skill and finding limitations in existing research was a challenging yet 
rewarding experience that helped the researcher grow as an individual. It left him with newfound confidence in his 
abilities and the knowledge that he can overcome challenges and succeed in future projects. 

5.5 Conclusion 
This project aimed at verifying the hypothesis by solving the class imbalance problem in the Kaggle Alzheimer’s Dataset 
[13] by oversampling minority classes using synthetic MRIs generated by WGAN-GP and evaluating the effectiveness
of this approach by comparing its results with those of conventional approaches of addressing class imbalance.

The results of the study indicated that the Custom CNN model outperformed all pretrained models, achieving a 
Balanced Accuracy of 87.04% and Matthew’s Correlation Coefficient of 82.61%. The study also found that transfer 
learning may not always be a viable approach for dealing with limited dataset sizes that too with heavy class imbalance. 
This was because unlike the pretrained models, the custom CNN model was trained from scratch and it learned patterns 
specific to this use case which made it more effective in classifying Alzheimer's MRIs as compared to pretrained 
models. The complexity of pretrained models with “ImageNet” weights was found to be unsuitable for this dataset, as 
they resulted in overfitting. In contrast, the custom CNN used batch normalization layers, which prevented the weights 
from becoming too small and allowed the optimizer to update the weights properly, thereby preventing overfitting. 

This study also concluded that the synthetic Alzheimer’s MRIs dataset generated using WGAN-GP was such high 
quality and diversity that they could be used as an effective substitute for real MRIs which overcomes the scarcity of 
medical data, increase accuracy and robustness of machine learning models, reduce costs and time, that too without 
causing any privacy concerns. The mean FID [73] Score of 0.13, a mean SSIM [61] of 0.97, a mean PSNR [61] of 32 
dB, and a mean Sharpness Difference (SD) [61] of 0.04 proved that synthetic MRIs are of as good quality as the real 
ones and are indeed new images as all these results were very close to their ideal values. Furthermore, the Seaborn’s 
Distplot [77] also indicated that the diversity of the synthetic MRIs is very close to that of real MRIs.  
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This study also concluded that the research hypothesis was correct and successful, with an overall increase of 11.77% 
in Balanced Accuracy and an 15% increase in Matthew's Correlation Coefficient. The study also found a 91.4% 
improvement in the performance on minority classes, at the expense of a 1% reduction in performance in the majority 
class. This indicates that the custom CNN model developed in this study can effectively classify Alzheimer's MRIs, 
particularly in the minority classes.  

Besides, this approach was found more effective than conventional approaches of addressing class imbalance and 
indicated that MCC is the best metric for evaluating performance on heavily imbalanced datasets as it provides a 
balanced measure of performance over all the classes which makes it a more sensitive metric to slight differences than 
Balanced Accuracy. Additionally, the study also found that image augmentation was not suitable for this use case as it 
introduced unrealistic or irrelevant variations that negatively impacted the model's performance in its ability to learn 
patterns and generalise. 

Finally, this study introduced GRAD-CAMs [14], which could help clinicians make better diagnoses and interpret the 
indicators for Alzheimer’s for each stage. In conclusion, the findings of this study have significant implications for the 
development of effective classifiers for Alzheimer's MRIs. 

5.6 Limitations 
While the results of the study showed promising improvements in the performance of the model, there are several 
limitations that must be considered. Custom CNN's (98.8% BA and 97.56% MCC) ability to generalize to other 
Alzheimer’s MRI datasets with different characteristics and distributions may be limited. The approach employed in 
this project, which involves generating synthetic MRIs, can also be computationally expensive and time-consuming, 
making it difficult to scale to larger datasets or real-world scenarios. Furthermore, the generated data may not accurately 
represent the full range of variability seen in real patient data, which could potentially impact the quality of the diagnosis 
and treatment decisions based on the model's outputs. In addition, the use of deep learning models for medical diagnosis 
and treatment can be challenging to interpret, making it difficult for clinicians to understand how the model arrived at 
its decisions. Although, the study introduced GRAD-CAMs to help clinicians make better diagnoses and interpret 
indicators for Alzheimer's, there may be limitations to the interpretability of the model. Additionally, the dataset used 
in the study may have certain biases that are not representative of the broader population. Therefore, the model's 
performance may be limited when applied to more diverse datasets or patient populations. It is also important to note 
that the dataset used in the study only contained axial MRI scans, while a full 3D MRI scan consists of axial, coronal, 
and sagittal parts of the brain. The lack of data from these other planes could potentially limit the model's ability to 
accurately diagnose and classify Alzheimer's disease. Finally, the study did not evaluate the robustness of the model to 
various types of noise and adversarial attacks, which could potentially compromise the accuracy of the diagnosis and 
treatment decisions. 

5.7 Future Work 
The study has identified several potential areas for future work that could expand upon the findings of this research. To 
evaluate the robustness of the model to various types of noise and adversarial attacks, researchers could test the model's 
performance when presented with noisy or altered images, or purposely crafted adversarial examples intended to deceive 
the model. This would provide a better understanding of the model's limitations and potential ways to enhance its 
performance in real-world settings. Furthermore, future work could extend the approach to 3D MRI scans, which 
encompass axial, coronal, and sagittal parts of the brain, as the current study only employed axial MRIs. By doing so, 
researchers could assess the effectiveness of the approach on a wider range of data and improve the accuracy of the 
diagnosis. Additionally, instead of only using MRI scans, multimodal features such as Age, Gender, PET scans, MRI 
scans, and cerebrospinal fluid data could be combined to train the classifiers. This would make the model more robust 
and generalize better [43]. Furthermore, attention layers can be added in the generator of the WGAN-GP to focus more 
on the low-level semantics which will further enhance the synthetic MRIs. Finally, by addressing these limitations, the 
diagnosis of Alzheimer's disease could be automated, and a WebApp or API could be developed to aid clinicians in 
making better-informed diagnoses on a larger scale. 
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Appendix: 
A1. Convolutional Neural Networks (CNNs) [79] 
Neurons are the building blocks of neural networks. They receive input data (𝒙𝒙𝒊𝒊) and apply fixed weights (𝒘𝒘𝒊𝒊) to 
amplify or suppress the input based on its significance. The output then passes through a non-linear activation function 
𝒇𝒇(∑𝒘𝒘𝒊𝒊𝒙𝒙𝒊𝒊). These neurons are organized into layers to form a Neural Network, and stacking three or more of these 
layers creates Deep Neural Networks (DNNs) that can extract complex features from large, non-linear datasets for 
data classification. The optimal weight matrices for the neurons are determined using an optimization algorithm that 
minimizes the loss function with respect to input data. Training is conducted for a fixed number of epochs during 
which the loss function is gradually reduced towards zero. 
Convolutional Neural Networks (CNNs) have revolutionized computer vision, achieving remarkable success in image 
recognition, classification, segmentation, and object detection. By passing images through a sequence of input layer, 
convolutional layers, activation functions, batch normalization layers, pooling layers, fully connected dense layers, 
and output layer, CNNs effectively extract valuable features from images, enabling more accurate and efficient 
analysis of visual data. 
1. Input layer: It is responsible for pre-processing the input data into a 3D matrix compatible with subsequent layers.

This includes reshaping the data based on the image's width, height, and colour channel depth without modifying
the data, and passing it on to the following layers for feature extraction and classification. As the quality of the
input data is crucial for the CNN's effectiveness, the input layer plays a critical role in ensuring that the data is
correctly pre-processed for optimal performance.

2. Convolutional Layer: They are responsible for extracting features from the input image by applying learnable
filters called convolutional kernels. These kernels highlight different patterns and produce feature maps. These
layers recognize various shapes, edges, and textures in the image, making it possible for the network to learn
complex representations of the input data. After feature extraction, the output of the convolutional layers is passed
through activation and pooling layers before being flattened and fed into fully connected layers for classification
and other tasks. This feature extraction process helps improving the accuracy for tasks such as image classification.

3. Activation functions: They introduce non-linearity into the output of the convolutional layers, allowing the
network to model complex, non-linear relationships in the input data. This is important for tasks such as image
classification. Different types of activation functions, such as ReLU, sigmoid, softmax, and tanh, can be used in a
CNN depending on the requirements of the task and the network architecture.

4. Batch Normalisation Layer: It improves the stability and speed of training by normalizing input values of a layer,
which adjusts and scales activations to have zero mean and unit variance. This mitigates vanishing and exploding
gradients that can occur during training, which can impede the network's ability to learn and prolong convergence.
By preventing these issues, batch normalization can improve overall performance. It can be applied before and
after the activation function, but generally performs better when placed after the activation function [79].

5. Pooling layers: They down-sample the output of the convolutional layer, reducing the spatial dimensions and
parameters in the network while preserving key information. This operation is typically achieved through either
max pooling or average pooling, which respectively extract the maximum or average value within a region of the
feature map. This layer enhances the computational efficiency of the network, reduces overfitting, and expands
the receptive field of later layers.

6. Fully connected layers: They are used to perform the final classification of an image by connecting all neurons in
the previous layer to every neuron in the next layer, allowing the network to learn complex, non-linear relationships
between the extracted features and the target classes. The flatten operation is typically used to convert the output
of the last convolutional and pooling layers into a one-dimensional array, which can be fed into a fully connected
layer. This helps reduce the total number of parameters and computations needed in the model, allowing for faster
training and inference times.

7. Output Layer: It produces the final network output, which can be a probability distribution across different classes
for classification tasks. The number of neurons in the output layer depends on the specific task, with each neuron
representing a class. For multiclass classification, the activation function used in the output layer is softmax, while
for binary classification, it is sigmoid. These activation functions ensure that the output values are normalized and
add up to one because of which these outputs can be perceived as class probabilities.
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A2. Transfer Learning [80]: 
Transfer learning is a technique used in Deep Learning when data or computational resources are limited. It involves 
fine-tuning a model pre-trained on a large dataset (usually “ImageNet”) for a smaller dataset. This method is mainly 
used in computer vision and Natural Language Processing tasks to improve overall performance, where large labelled 
datasets are unavailable. Pre-trained Deep Convolutional Neural networks, including DenseNet169, InceptionV3, 
ResNet50, Xception, EfficientNetB3, and VGG19, were used in this project to extract features from MRI scans for 
image classification. 

A3. Ensemble Learning [81]: 
  Ensemble learning uses different methods such as bagging, boosting, and stacking to combine models with the idea of 
leveraging their collective intelligence and suppressing undesirable characteristics like bias, variance and noise thus 
making the resulting model much more robust. Bagging trains multiple models independently on different subsets of 
the training data and then combines their predictions by averaging or voting. Boosting, on the other hand, trains multiple 
models sequentially and adjusts the weights of the training data to focus on the samples that are harder to classify. 
Finally, stacking involves training a meta-model to combine the predictions of multiple base models. Ensemble learning 
has been successful in various machine learning applications, including image classification, natural language 
processing, and recommendation systems. It can be applied to different types of models, such as decision trees, neural 
networks, and support vector machines 

A4. Evaluation Metrics for Image Classification [82]: 
Machine learning evaluation metrics provide quantitative measures of a model's performance. In CNNs, they are used 
to assess the effectiveness of the model for tasks such as image classification. Common metrics include accuracy, 
precision, recall, F1 score, Balanced Accuracy, Matthew’s correlation coefficient (MCC) and confusion matrix. Higher 
values of these metrics indicate better classification performance. Here's a brief summary of each: 
1. Confusion Matrix: It is a matrix that compares the predicted and actual class labels of a dataset to evaluate the

performance of a classification model. The matrix has four cells representing the counts of true positives (TP),
false positives (FP), false negatives (FN), and true negatives (TN). TP indicates when the model correctly predicts
the positive class, while FP indicates when the model incorrectly predicts the positive class. FN represents the
cases where the model incorrectly predicts the negative class, and TN represents the cases where the model
correctly predicts the negative class. Moreover, it can be used to calculate other evaluation metrics such as
accuracy, precision, recall, and F1 score.

Fig A4(1) Confusion Matrix [82] 

2. Accuracy: It is the ratio of correctly classified observations to the total number of predicted observations. It is
calculated by dividing the sum of true negatives and true positives by the sum of all values in the confusion matrix.
Accuracy is expressed as a percentage.

𝑾𝑾𝒄𝒄𝒄𝒄𝑨𝑨𝒓𝒓𝑮𝑮𝒄𝒄𝒚𝒚 =  𝑾𝑾𝑨𝑨𝒎𝒎𝑵𝑵𝑮𝑮𝒓𝒓 𝑮𝑮𝒇𝒇 𝒄𝒄𝑮𝑮𝒓𝒓𝒓𝒓𝑮𝑮𝒄𝒄𝑮𝑮𝑷𝑷𝒚𝒚 𝒄𝒄𝑷𝑷𝑮𝑮𝒔𝒔𝒔𝒔𝒊𝒊𝒇𝒇𝒊𝒊𝑮𝑮𝑮𝑮 𝒊𝒊𝒎𝒎𝑮𝑮𝒈𝒈𝑮𝑮𝒔𝒔
𝑻𝑻𝑮𝑮𝑮𝑮𝑮𝑮𝑷𝑷 𝑾𝑾𝑨𝑨𝒎𝒎𝑵𝑵𝑮𝑮𝒓𝒓 𝑮𝑮𝒇𝒇 𝑰𝑰𝒎𝒎𝑮𝑮𝒈𝒈𝑮𝑮𝒔𝒔

 × 𝟏𝟏𝟏𝟏𝟏𝟏 

3. Precision: It indicates the confidence we have in our predictions. It is the ratio of True Positive Predicted
observations and all positively predicted observations. It ranges from 0 to 1

𝑷𝑷𝒓𝒓𝑮𝑮𝒄𝒄𝒊𝒊𝒔𝒔𝒊𝒊𝑮𝑮𝑮𝑮 =  𝑻𝑻𝒓𝒓𝑨𝑨𝑮𝑮 𝑷𝑷𝑮𝑮𝒔𝒔𝒊𝒊𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔
𝑻𝑻𝒓𝒓𝑨𝑨𝑮𝑮 𝑷𝑷𝑮𝑮𝒔𝒔𝒊𝒊𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔+𝑭𝑭𝑮𝑮𝑷𝑷𝒔𝒔𝑮𝑮 𝑷𝑷𝑮𝑮𝒔𝒔𝒊𝒊𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔

4. Recall: It tells us about what proportion of actual positive observations the classifier could predict correctly. It
ranges from 0 to 1.

𝑹𝑹𝑮𝑮𝒄𝒄𝑮𝑮𝑷𝑷𝑷𝑷 =  𝑻𝑻𝒓𝒓𝑨𝑨𝑮𝑮 𝑷𝑷𝑮𝑮𝒔𝒔𝒊𝒊𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔
𝑻𝑻𝒓𝒓𝑨𝑨𝑮𝑮 𝑷𝑷𝑮𝑮𝒔𝒔𝒊𝒊𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔+𝑭𝑭𝑮𝑮𝑷𝑷𝒔𝒔𝑮𝑮 𝑾𝑾𝑮𝑮𝒈𝒈𝑮𝑮𝑮𝑮𝒊𝒊𝑷𝑷𝑮𝑮𝒔𝒔
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5. F1 Score: It is the harmonic mean of precision and recall and is used when both precision and recall are important
for the given problem. It is a measure of the model's accuracy that considers both false positives and false
negatives. A perfect F1 score is 1, indicating that the model has achieved both high precision and high recall. A
score of 0 indicates poor performance.

𝑭𝑭𝟏𝟏 𝑺𝑺𝒄𝒄𝑮𝑮𝒓𝒓𝑮𝑮 =  𝟐𝟐 × 𝑷𝑷𝒓𝒓𝑮𝑮𝒄𝒄𝒊𝒊𝒔𝒔𝒊𝒊𝑮𝑮𝑮𝑮 × 𝑹𝑹𝑮𝑮𝒄𝒄𝑮𝑮𝑷𝑷𝑷𝑷
𝑷𝑷𝒓𝒓𝑮𝑮𝒄𝒄𝒊𝒊𝒔𝒔𝒊𝒊𝑮𝑮𝑮𝑮+𝑹𝑹𝑮𝑮𝒄𝒄𝑮𝑮𝑷𝑷𝑷𝑷

 

6. Matthews Correlation Coefficient: It is a statistical measure that assesses the performance of a classification model
by taking into account all four categories in the confusion matrix. It is called a "correlation coefficient" because it
measures the correlation between the predicted and true labels and provides a balanced measure that is not affected
by class imbalance. It ranges from -1 to +1, where +1 represents a perfect prediction, 0 represents a random
prediction, and -1 represents a total disagreement between the prediction and the true labels.

𝑴𝑴𝑪𝑪𝑪𝑪 = (𝑻𝑻𝑷𝑷 × 𝑻𝑻𝑾𝑾) − (𝑭𝑭𝑷𝑷 × 𝑭𝑭𝑾𝑾)
�(𝑻𝑻𝑷𝑷+𝑭𝑭𝑷𝑷)(𝑻𝑻𝑷𝑷+𝑭𝑭𝑾𝑾)(𝑻𝑻𝑾𝑾+𝑭𝑭𝑷𝑷)(𝑻𝑻𝑾𝑾+𝑭𝑭𝑾𝑾)

7. Balanced Accuracy: It is the arithmetic mean of sensitivity (True Positive Rate or recall) and specificity (True
Negative Rate).

𝑩𝑩𝑮𝑮𝑷𝑷𝑮𝑮𝑮𝑮𝒄𝒄𝑮𝑮𝑮𝑮 𝑾𝑾𝒄𝒄𝒄𝒄𝑨𝑨𝒓𝒓𝑮𝑮𝒄𝒄𝒚𝒚 =  𝑻𝑻𝑷𝑷𝑹𝑹 + 𝑻𝑻𝑾𝑾𝑹𝑹
𝟐𝟐

 

8. AUC-ROC Curve: It is a graphical representation of the performance of a classification model. It plots the true
positive rate (TPR) against the false positive rate (FPR) at different probability thresholds. The AUC-ROC curve
measures the model's overall performance, and an AUC-ROC value of 0.5 indicates a random model, while a
value of 1.0 indicates a perfect model. It is a widely used evaluation metric because it summarizes the model's
performance across all possible probability thresholds and is not affected by the class distribution or the choice of
the positive class threshold.

9. Precision Recall Curve: It is a graphical representation of the performance of a classification model that plots the
precision against the recall at different probability thresholds. It measures the model's overall performance and is
a useful evaluation metric, especially in cases of class imbalance. A perfect model has a PR curve that passes
through the point (1,1), while a random model has a PR curve that is a straight line from the origin to the point
(1,r), where r is the ratio of positive samples to the total number of samples.

Balanced Accuracy [73], MCC [74], Area Under Precision Recall Curve (AUPRC) and confusion matrix are the most 
appropriate metrics for this project because of the following reasons: 

• F1 score may be misleading for heavily imbalanced datasets as it's biased towards the majority class due to
equal weighting of precision and recall, regardless of class balance. Thus, a high F1 score does not necessarily
indicate good performance on the minority class.

• F1 score is insensitive to misclassified true negatives and prioritizes positive instances more as both precision
and recall are calculated based on the positive instances. When working on a heavily imbalanced dataset where
positives are as important as the negatives, Balanced Accuracy does much better than F1 score because
balanced accuracy shows a fast decrease when there is a decrease in the correct predictions of true negatives.

• Matthew’s correlation coefficient takes into account all four categories of confusion matrix and scores high
only if high percentage of both negative and positive instances are classified correctly, regardless of class
balance or imbalance. It's unbiased towards any class and hence suitable for heavily imbalanced datasets.

• ROC curves plot the true positive rate (TPR) against the false positive rate (FPR) and only consider the positive
class, ignoring the effects of the negative class. While the area under the curve (AUC) evaluates overall
classification performance, it does not place greater emphasis on one class over the other, making it less
effective for representing minority classes. On the other hand, precision-recall curves directly reflect class
imbalance, and therefore provide a better means for highlighting differences between models for highly
imbalanced datasets. The area under the precision-recall curve (AUPRC) combines the benefits of both the
AUC-ROC and precision-recall curves by summarizing the model’s performance across all possible
probability thresholds, and is sensitive to the model’s performance for the positive class (i.e., One vs Rest).
Unlike the AUC, the AUPRC is not influenced by the class distribution or the choice of positive class
threshold, making it an excellent metric for evaluating severely imbalanced datasets.

• Confusion matrix will enable the researcher to compare the performance on the minority classes for testing
the hypothesis of this research.
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B1. Generative Adversarial Networks (GANs) [56] 
Generative Adversarial Networks (GANs) are a kind of neural network that can generate new data such as images, 
text, and audio, without being explicitly taught. GANs are comprised of two networks, a generator and a discriminator. 
The generator produces novel data samples, while the discriminator attempts to differentiate between the fake and real 
data. These networks are trained in an adversarial manner, where the generator aims to deceive the discriminator, while 
the discriminator tries to accurately classify the data. 

During the training process of GANs, the generator network utilizes a random noise vector to generate new samples 
that are convincing enough to deceive the discriminator. The discriminator network takes both real and generated 
samples as input and produces a probability score that indicates whether the sample is real or generated. As GANs are 
composed of two networks with distinct objectives, they cannot be trained in the same way as traditional neural 
networks. Therefore, each training iteration of GANs is divided into two phases: 

1. The initial phase of GAN training entails training the discriminator. This involves selecting a batch of real
images from the training dataset and pairing them with an equivalent number of fake images produced by the
generator. These images are labelled as 1 for real and 0 for fake, and the discriminator is trained for one step
on this labelled batch using the binary cross-entropy loss. 𝛁𝛁𝜽𝜽𝒈𝒈

𝟏𝟏
𝒎𝒎
∑ [𝑷𝑷𝑮𝑮𝒈𝒈𝑫𝑫�𝒙𝒙(𝒊𝒊)� + 𝐥𝐥𝐥𝐥𝐥𝐥 (𝟏𝟏 − 𝑫𝑫(𝑮𝑮(𝒛𝒛(𝒊𝒊)𝒊𝒊=𝒎𝒎
𝒊𝒊=𝟏𝟏 )))].

During this stage, it is critical to note that backpropagation only optimizes the discriminator's weights. 

2. The second phase involves training the generator by generating another batch of fake samples and having the
discriminator determine their authenticity. Unlike the first phase, no real images are included in this batch,
and all samples are marked as real, causing the discriminator to believe the fakes are real. Notably, during this
step, the discriminator's weights are frozen, and only the generator's weights are updated via backpropagation.

Although the generator is never shown real images, it gradually learns to generate credible fake samples. However, 
GAN training is a challenging task due to a phenomenon called "Mode Collapse," where the generator only produces 
samples similar to a specific subset of the authentic data, rather than a diverse array of samples. This occurs because 
the generator focuses too much on those images which it can so generate well that it can fool the discriminator each 
time and eventually forgets how to produce other images [59]. Mode collapse becomes more likely with more epochs 
[59] which is why many researchers could only synthesize synthetic MRIs using just 400-700 images and that too for
1000 epochs. Furthermore, since the generator and discriminator networks are in constantly pushing against each other,
their parameters may fluctuate and become unstable. Thus, significant fine-tuning of hyperparameters may be
necessary.

B2. Deep Convolutional Generative Adversarial Networks (DC-GANs) [58] 
DC-GANs (Deep Convolutional GANs) employ convolutional layers in both the generator and discriminator networks
to generate synthetic image data, and employ the same loss function as GANs. To ensure the stability of DC-GANs,
the following are the key guidelines to be followed while building them:

• Replace any pooling layers with strided convolutions (in the discriminator) and transposed convolutions (in
the generator).

• Use batch normalisation in both the generator and the discriminator, except in the generator’s output layer and
the discriminator’s input layer.

• Remove fully connected hidden layers for deeper architectures.
• Use ReLU activation in the generator for all layers except the output layer, which should use tanh
• Use leaky ReLU activation in the discriminator for all layers.

B3. Evaluation Metrics for Synthetic Image Generation [61]: 
The issue of establishing objective metrics that accurately correlate with perceived quality measurement is still an open 
issue. In order to assess the quality of synthetic MRIs produced by GAN, suitable quantitative and qualitative 
evaluation techniques were employed. Various GAN evaluation methods were assessed and contrasted by the authors 
of [61]. Based on their findings, the FID Score and Image Quality Measures such as SSIM, Sharpness Difference, and 
PSNR were identified as the most effective methods. These are discussed below:        
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       Fig B3(1) Comparison of multiple GAN evaluation metrics [61] 

1. Fréchet Inception Distance (FID) [76]: It extracts the feature embeddings from a batch of both real and synthetic
images using a pretrained InceptionV3 model and computes the following:

𝑭𝑭𝑰𝑰𝑫𝑫 =  �𝝁𝝁𝒓𝒓 − 𝝁𝝁𝒈𝒈�
𝟐𝟐 + 𝑻𝑻𝒓𝒓(𝚺𝚺𝒓𝒓 + 𝚺𝚺𝒈𝒈 − 𝟐𝟐�𝚺𝚺𝒓𝒓𝚺𝚺𝒈𝒈�

𝟏𝟏/𝟐𝟐)
It is considered to be the most appropriate metric for evaluating performance of GANs as it not only compares the 
quality of synthetic images by computing the Euclidean distance (first term) between the mean of real and synthetic 
images but also compares the distribution of synthetic images with respect to the distribution of real images by 
computing the second term. This makes it sensitive to “mode collapse” (discussed in the next section) which is 
why it will give a good score (ideally 0) only if both quality and diversity of synthetic images are as good as the 
real ones. Additionally, unlike SSIM, PSNR and SD which compare an image to a reference image, FID can 
compare a whole batch of images with a reference batch of images which makes it ideal for comparing epochs 
during training of GAN. Being a statistical measure, it is sensitive to both number of images in the batch and the 
scale of those images. This is why there is no universally acceptable threshold for FID [76] but FID < 5 was found 
appropriate for this project through experimentation. 

2. Structural Similarity Index (SSIM): SSIM is designed to measure the perceptual difference between pixels of two
images by comparing their luminance, contrast, and structure. It produces a score between 0 and 1, where a score
of 1 indicates that the two images are identical, and a score of 0 indicates that they are completely dissimilar. SSIM
> 0.9 is considered to be an excellent reconstructed/synthetic image [63].

𝑺𝑺𝑺𝑺𝑰𝑰𝑴𝑴(𝒙𝒙,𝒚𝒚) =  
�𝟐𝟐𝝁𝝁𝒙𝒙𝝁𝝁𝒚𝒚 + 𝑪𝑪𝟏𝟏� + (𝟐𝟐𝝈𝝈𝒙𝒙𝒚𝒚 + 𝑪𝑪𝟐𝟐)
�𝝁𝝁𝒙𝒙𝟐𝟐 + 𝝁𝝁𝒚𝒚𝟐𝟐 + 𝑪𝑪𝟏𝟏�(𝝈𝝈𝒙𝒙𝟐𝟐 + 𝝈𝝈𝒚𝒚𝟐𝟐 + 𝑪𝑪𝟐𝟐)

Where x is the estimated MRI and y is the ground truth MRI, 𝝁𝝁𝒙𝒙 𝑮𝑮𝑮𝑮𝑮𝑮 𝝁𝝁𝒚𝒚 are their averages, 𝝈𝝈𝒙𝒙𝟐𝟐 𝑮𝑮𝑮𝑮𝑮𝑮 𝝈𝝈𝒚𝒚𝟐𝟐  are their 
variances and 𝝈𝝈𝒙𝒙𝒚𝒚 is the covariance of 𝒙𝒙 and 𝒚𝒚. 𝑪𝑪𝟏𝟏𝑮𝑮𝑮𝑮𝑮𝑮 𝑪𝑪𝟐𝟐 are just constants used to stabilize the division with 
weak denominator. 
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3. Peak Signal to Noise Ratio (PSNR): It is used to measure the ratio between the maximum possible intensity value
and the mean squared error of the synthetic and the real image. Ideally, PSNR should be between 30 dB and 50 dB
[63] for 8 bit “.jpg” images. Its formula is given below where n is the number of pixels in the given image.

𝑷𝑷𝑺𝑺𝑾𝑾𝑹𝑹 = 𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏
(𝐦𝐦𝐦𝐦𝐦𝐦(𝒚𝒚))𝟐𝟐
𝟏𝟏
𝑮𝑮∑ (𝒚𝒚𝒊𝒊 − 𝒚𝒚�)𝟐𝟐𝑮𝑮

𝒊𝒊

4. Sharpness Difference (SD): It measures the loss of sharpness during image generation. Ideally the sharpness
difference between a real and synthetic image should be 0 [63]. It is computed as:

𝑺𝑺𝑫𝑫(𝑰𝑰,𝑲𝑲) = 𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 �
𝑴𝑴𝑾𝑾𝑿𝑿𝑰𝑰𝟐𝟐

 𝛁𝛁𝑺𝑺𝑰𝑰,𝑲𝑲
� 

5. Seaborn’s Distplot: It is a type of histogram that displays the distribution of a continuous variable in a dataset. It
offers a fast overview of a variable's distribution, including its range, shape, and central tendency. Distplots are
commonly used to compare and contrast the distributions of different variables or datasets. They can also be used
to determine how similar is the distribution of real and synthetic images if they overlap.
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