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ABSTRACT 
 

 

 This dissertation presents two main themes.  One is the study of existing “Trapdoor one-way functions” based on 

elliptic curves over Zn” and the other is “trapdooring discrete logarithms on Elliptic curves over rings”. Specifically contribution 

of this thesis are as follows : 

 

 We present an over view of a “Trapdoor one-way functions” based on elliptic curves over a ring Zn, whose security is 

based on the difficulty of factoring n.  Also we propose a new public key cryptosystem based on the elliptic curves over a ring 

Zn.  This scheme can be used for both digital signatures and encryption/decryption schemes.  The advantage of this scheme is 

very little restriction on the type of elliptic curves and types of primes that can be used.  The security of the proposed scheme is 

based on the factoring composite numbers. 

 

 Finally, we present the elliptic curve version for the existing cryptosystems like Naccache-Stern, Okamoto-Uchiyama 

and Paillier Cryptosystems. The security and efficiency properties of these elliptic version schemes are same as the original 

cryptosystems. 

 

CHAPTER – 1 

INTRODUCTION 

1.1  General introduction 

As long as there are creatures endowed with language, there will be confidential messages intended for a limited 

audience. How can these messages be transmitted secretly, so that no unauthorised person gets knowledge of the content of the 

message? 

And how can one guarantee that a message arrives in the right hands exactly as it was transmitted? 

Traditionally, there are two ways to answer such questions. One can disguise the very existence of a message, perhaps 

by writing with invisible ink; or try to transmit the message via a trustworthy person. This is the method favoured throughout 

history by clandestine lovers and nearly all classical tragedies provide evidence of the method’s shortcomings. 

A totally different approach is to encipher (or encrypt) a message. In this case, one does not disguise its existence. On 

the contrary, the message is transmitted over a public, insecure channel, but encrypted in such a way that no one except the 

intended recipient may decipher it. This offers a rather tempting challenge to an enemy. Such challenges are usually accepted 

and not unusually overcome. 

There is a satisfying appropriateness to cryptology’s role in the birth of electronic computing. The arrival of the 

Information Age has revealed an urgent need for cryptography in the private sector. Today, vast amounts of sensitive 

information such as health and legal records, financial transactions, credit ratings and the like are routinely exchanged between 

computers via public communication facilities. Society turns to the cryptographer for help in ensuring the privacy and 

authenticity of such sensitive information. 

Cryptographic techniques, such as enchiperment, digital signatures, key agreement and secret sharing schemes are 

important building blocks in the implementation of any security service. A cryptosystem defines encryption and decryption 

transformations, which depend on the value of ‘S’ keys. A symmetric cryptosystem uses one key for both transformations. A 

public key cryptosystem uses separate keys for each transformation. 

The idea of the public-key technique was first introduced by Diffie and Hellman [5] in 1976, and began a revolution in 

cryptology. Public-key cryptosystems can be encryption or authentication schemes. The RSA algorithm can operate in both 

modes. The strength of RSA depends on the difficulty of factoring the product of two large primes. The selection of an 

appropriate modulus size can make RSA hard (modulus arbitrarily long). The ElGamal algorithm is an alternative public-key 

algorithm, the strength of which depends on the difficulty of computing discrete logarithms. 

A digital signature is an electronic equivalent of verifying the source of a written message on the basis of a written 

signature. A digital signature is stronger than a seal, in that the recipient must not be able to generate a digital signature which is 

indistinguishable from one generated by the originator. Digital signatures usually employ public-key cryptosystems, often in 

conjunction with a one-way hash-function. 

‘Key agreement’ denotes a protocol whereby two (or more) parties jointly establish a secret key by communicating 

over a public channel. In a key agreement scheme, the value of the key is determined as a function of inputs provided by both 

parties. 
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1.2 Overview of the Dissertation 

This dissertation concern “A brief study of Elliptic Curve Cryptography”.  This dissertation has been split up into 

five chapters with the survey of elliptic curve cryptosystems.  In this section, we overview the Subject matter of each chapters. 

Chapter 1  

In this chapter, we survey the background theory on which the subject matter of the rest of the thesis is band.  First, we 

review the basics of abstract algebra, number theory and some computational primitives such as integer factorization, Discrete 

logarithm, the Diffie Hellman and Quadratic residuosity problems.  We also review symmetric, public-key encryption schemes 

and digital signatures. 

Chapter 2 

  In this chapter we discuss several aspects of elliptic curves and elliptic curve cryptography.   First we will treat them 

more as mathematical objects, and then we discuss more cryptography related stuff.  Everything in this chapter is written in a 

cryptographers view.  We present some important properties that a cryptosystem must have and we assert that they hold for 

elliptic curve cryptography. 

Chapter 3 

  In this chapter we review a “Trapdoor one-way function” (TOF) based on elliptic curves 

over a ring Zn [21].  The security of this TOF depends on the difficulty of factoring n.  Also we present a public key 

cryptosystem based on elliptic curves over a ring Zn.  This scheme can be used for both digital signatures and encryption 

applications, doesn’t expand the amount of data that needs to be transmitted and appears to be immune from homomorphic 

attacks.  The main advantage of this scheme is very little restriction on the type of elliptic curves and types of primes that can be 

used.  In addition the system works on a fixed elliptic curves.  The security of the system relies on the difficulty of factoring 

large composite numbers. 

 

Chapter 4 

 In this chapter we propose the elliptic curve version for the existing cryptosystems like Naccache-Stern cryptosystem 

[18], Okamoto-Uchiyama [22] and Paillier cryptosystem [23]. The first elliptic curve Naccache-Stern cryptosystem defined on 

curves over the ring Zn, n=pq which relies a discrete log encryption as originally issued by Vanstone and Zuccherato 

probabilistic scheme.  Our second cryptosystem relates to p-residuosity of a well-chosen curve over a Zp2q. 

 Finally, we show how to extend the same design to frame work of Paillier encryption, while preserving all security and 

efficiency properties inherent to the original Paillier’s Cryptosystem.  

1.3  Abstract Algebra 

The purpose of this section is to introduce the algebraic definitions and results that are necessary for understanding the 

results in this dissertation. Most of the theorems are quoted without proof, but with references to where proof can be found. 

Definition : A binary operation ‘.’ on a set S is a mapping from S x S to S. That is, ‘.’ is a rule which assigns to each ordered 

pair of elements from S x S to an element of S. 

 

1.3.1 Groups 

Definition: A group G(.) or simply G consists of a set G with a binary operation ‘.’ on G satisfying the following properties. 

(i)  For every a, b, c Є G, a . (b . c) = (a . b) . c  (Associative) 

(ii)  There is an element e Є G such that every a in G, a . e = e . a = a.  (Identity) 

(iii)  For every a Є G, there is an element a –1 in G such that a . a-1 = a-1 . a = e. 

         (Inverse) 

A group G is abelian (or commutative) if, furthermore 

(iv)  a . b = b . a for all a, b Є G. 

Note : A group G is called an additive group when the operation is additive (+), while a group G is called a 

multiplicative group under the operation of multiplicative (x). In a group with an additive operation, we have  

a + (-a) = (-a) + a = 0, where the inverse element of a is written as -a. In this case, the identity of element e is 0. Under 

the multiplicative operation, the identity element e is 1 and inverse element of a is written as a-1, so that a a-1 = a-1 a = 1. 

 

Definition : Let G be a group. If G has a finite number of elements, say n, then we say that the order of G is n. We write this 

symbolically by o(G) = n, and in this case we say G is a finite group. 
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Definition : A nonempty subset H of a finite  group G is a subgroup if H is a group with the same binary operation as G. 

 

Theorem   Let G be a group with binary operation and let g be an element of G. Then     H = { gi  |  i is an integer} is a 

subgroup of G. 

 

Definition: A group H is said to be cyclic if there exists an element g Є H such that every element of H can be written as gn for 

some integer n. In this case, H is called the cyclic group generated by g and g is called a generator of H. If H is a subgroup of 

another group G, then H is called a cyclic subgroup. 

Corollary  If G is a finite group of order n, then gn = e for all g Є G.  A proof can be found [10] in page 46.  

Corollary The order of every element of a finite group is a divisor of the order of the group. A proof can be found  [10] in Page 

46.  

Corollary  If G is a finite group of order p where p is a prime integer, then G is cyclic and every element of G except the 

identity is a generator of G. A proof can be found [10] in page 46.  

Definition :  A homomorphism from (G1,) to (G2,) H is a mapping f from G to H such that f(a.b) = f(a)  f(b)  

 

 

Definition Let (G1,) and (G2,)   be groups and let α be a homomorphism from G to H. If α is both onto and one-to-one, then α 

is called an isomorphism. If α is an isomorphism, then G and H are said to be isomorphic, and we write G  H. 

1.3.2  Rings and Fields 

We present another algebraic system called a ring. We define ring and prove several elementary theorems about rings. 

Then we study subrings and their homomorphisms and isomorphisms. We also study two special types of rings namely, Integral 

domains and fields. These two algebraic systems are important because our usual ‘arithmetic’ is carried out in either an integral 

domain or a field. 

Definition : A ring R(+, .) or simply R consists of a set R with two binary operations, denoted by + and . called addition and 

multiplication, which satisfy the following axioms. 

(i)  (a + b) + c = a + (b + c) for all a, b, c Є R. (Associativity of addition) 

(ii)  There exists an element 0 Є R such that 0 + a = a for all  

a Є R. (existence of additive identity) 

(iii)  For each a Є R, there exists x Є R such that a + x = 0. (existence of additive inverse) 

(iv)  a + b = b + a for all a, b Є R. (Commutative of addition) 

 

(v)  (a . b) . c = a . (b . c) for all a, b, c Є  R. (Associativity of multiplication) 

(vi)  a . (b + c) = (a . b) + (a . c) and (a + b) . c = (a. c) + (b. c) for all a, b, c Є R (Distributive) 

Definition : Let R be a ring. We say R is a ring with unity if there exists e Є R such that a . e = e . a = a for all a Є R. If such an 

element e exists, it is called a unity element of R. 

Definition : Let R be a ring. Then R is said to be commutative ring if a . b = b . a for all a, b Є R. 

Definition :  A nonempty set S is a subring of a ring R if S is a subset of R and if S itself is a ring with respect to the addition 

and multiplication of R. 

 

We defined homomorphism between two rings. Since rings have two binary operations defined on them, rather than 

one, it is not unreasonable that a homomorphism between two rings must preserve both the addition and multiplication of the 

rings. 

 

Definition :  Let R and S be rings. A ring homomorphism is a mapping  from R to S such that 

(i)   (a + b) =  (a) +  (b) 

(ii)   (a . b) =  (a) .  (b)  for all a, b Є R. 

 

Definition :  A field F is a commutative ring in which all the nonzero elements form an abelian group under multiplication. 

Definition : Let a and b be two elements of a commutative ring R, with  a  0. The element a divides b, denoted a|b, if there 

exists an element c Є R such that  b = ac. 
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Definition : Let a1, ….., an be elements of a commutative ring R. A nonzero element c Є R is a common divisor of a1,……, an 

if c|ai for i = 1,…., n. 

Definition :  Let a1,…., an be elements of commutative ring R. A nonzero element d Є R is a greatest common divisor of 

a1,……..., an, denoted  

by d =gcd(a1,……., an), if 

(i)  d is a common divisor of a1,……, an, and 

(ii)  whenever c|ai for i Є {1,…., n}, then c|d. 

 

Definition  Let a and b be two elements in a commutative ring R with unity. Then a and b are coprimes or relatively prime if 

gcd (a, b) is a unit. 

Definition  Let R be a commutative ring. A polynomial in the indeterminate x over the ring R is an expression of the form 

f(x) = anxn + . . . + a2x2 + a1x + a0 

where each ai Є R and n 0. The element ai is called the coefficient of xi in f(x). The largest integer m for which am 0 is called 

the degree of f(x), denoted by deg f(x); am is called the leading coefficient of f(x).  

If f(x) = a0 (a constant polynomial) and a0  0, then f(x) has degree 0. If all the coefficients of f(x) are 0, then f(x) is called the 

zero polynomial and its degree, for mathematical convenience, is defined to be -1.  

The polynomial f(x) is said to be monic if its leading coefficient is equal to 1. 

 

Definition :  If R is a commutative ring, the polynomial ring R[x] is the ring formed by the set of all polynomials in the 

indeterminate x having coefficients in  R. The two operations are the standard polynomial addition and multiplication, with 

coefficient arithmetic performed in the ring R. 

 

Definition :  Let F be a field and f(x) Є F[x] be a polynomial. Then f(x) is said to be irreducible over F if it cannot be written as 

the product of two polynomials in F[x], each of positive degree. 

Definition : (Division algorithm for polynomial) Let F be a field  

if g(x), h(x) Є  F[x], with h(x)  0, then ordinary polynomial long division of g(x) by h(x) yields polynomials q(x) and r(x) Є 

F[x] such that   g(x) = q(x)h(x) + r(x); where deg r(x) < deg h(x).  Moreover, q(x) and r(x) are unique. The polynomial q(x) is 

called the quotient, while r(x) is called the remainder. The remainder of the division is sometimes denoted g(x) mod h(x), and 

the quotient is sometimes denoted  by g(x) div h(x). 

 

Definition :  An integral domain R is Euclidean ring if for all nonzero a Є R, there is defined a non negative integer d(a) such 

that 

(i) for all nonzero a, b Є R,  d(a)  d(ab), and 

(ii) for any a; b Є R with b  0, there exist m, r Є R such that a = mb + r with either r = 0 or d(r) < d(b). 

Lemma :  Let R be a Euclidean ring. Any two elements a and b in R have a greatest common divisor d which can be expressed 

in the form d = a + b for some , R. 

Theorem :  Let a and b be two elements in a Euclidean ring R. The n gcd(a,b) can be calculated in R as follows: 

a = q0b + r1,   where d(r1) < d(b) 

b = q1r1 + r2,   where d(r2) < d(r1) 

rn-2 = qn-1rn-1 + rn ,   where d(rn) < d(rn-1) 

rn-1 = qnrn , 

where rn = gcd(a, b). 

1.4  Number Theory 

The set of integers { ….., -2, -1, 0, 1, 2, … } is denoted by the symbol Z .  

 

Definition :  Let a, b be integers.  Then a Divides b (equivalently : a is a divisor of b, or a is a factor of b ) if there exists an 

integer c such that b = ac .  If a divides b, then we write a|b.  

Proposition :Properties of divisibility :  For all a,b c  Z, the following are true :  

(i) a|a  

(ii) If a|b and b|c, then a|c.  

(iii) If a|b and a|c, then a|(bx+cy) for all x,y  Z.  
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(iv) If a|b and b|a, then a =  b .  

 

Definition : Division algorithm for integers : If a and b are integers with  b  1, then ordinary  division of a by b yields 

integers q (the quotient) and r (the remainder) such that  

  a = qb +r , where 0  r  b.  

Moreover, q and r are unique.  The remainder of the division is denoted a mod b, and the quotient is denoted a div b.  

 

Definition :  A non – negative integer d is the least common multiple of integers a and b, denoted d = lcm(a,b), if  

(i) a|d  and b|d ; and  

(ii) whenever a|c and b|c, then d|c.  

Equivalently, lcm(a,b) if n is the smallest non-negative integer that is divisible divided by both a and b.  In fact, lcm(a,b) = ab / 

gcd (a,b).  

Definition :  If a and b are integers, then a is said to be congruent to b modulo n, write a  b ( mod n ), if n divides ( a – b ). 

The integer n is called the modulus of the congruence.  

Definition : The equivalence class modulo n of an integer b is the set of all integers congruent to  b modulo n.  

Definition :  The ring of integers modulo n, denoted by Zn , is the set of (equivalence classes of) is the integers  {0,1,2,, n–1}.  

Addition, subtraction, and multiplication in Zn are performed modulo n.  

 

Definition : An integer b  Zn is said to be invertible  or a unit of Zn , if there is an integer x  Zn , such that bx  1 ( mod n ) .  

If such an x exists, then it is referred to as the multiplicative inverse of b in Zn, and denoted by b-1 .  

 

Theorem :  Let a, b and n > 0 be integers , and g = gcd (a,n).  The congruence     ax  b ( mod n ) has a solution if and only if 

g|b.  If this condition is met, then the solutions form an arithmetic progression with common difference n/g, giving g solutions 

modulo n.  

A proof can be found [29] in Page 62.  Therefore, b  Zn has a multiplicative inverse if and only if gcd (b, n) = 1 . Therefore, if 

n is prime, every non –zero b  Zn has a multiplicative inverse.  

Theorem  (Chinese Remainder Theorem )  : Suppose n1 , n2 , …, nr are r positive integers that are pair-wise coprime, and let 

a1 , a2 ,…, ar denote any r integers.   

Then the congruences 

    x  a1 ( mod n1 )  

   x  a2   (mod n2 )  

   x  ar ( mod nr )  

have a common solution which is unique modulo n = n1 n2 ….nr .  

A proof can be found [20] in Page 136. 

So given n1 and n2 coprime any pair of simultaneous congruences  

x  a1 (modn1 )  and x   a2 ( mod n2 ) have the same solutions as the single congruence x  = a2 t1 n1 + a1 t2n2 ( mod n1 n2 ) ,  

where t1 n1 + t2 n2 = 1 .  In particular , if a1 = a2 , then x   a1 ( mod n1 n2 ) .  

 

Definition : The multiplicative group of Zn is Zn
* = { a  Zn | gcd (a,n) = 1 } .  

 

 

Definition :  Let a  Zn
* .  The order of a , denoted 0(a), is the least positive integer k such that ak  1  ( mod n ).  

Theorem ( Fermat’s Theorem ) : Let p be a prime.  If  (p,a) = 1, then ap-1  1 ( mod p ) . A proof can be found [20] in Page 

187.  

Definition : The Euler Totient Function (n) is the number of positive integers less than or equal to n that are coprime to n.  

Note that (n) = |Zn
*| .  

Theorem (Euler’s Theorem ) : Let n  2 .  If gcd (a,n) = 1 , then a(n)  1  (mod n).  

A proof can be found [20] in pages 203 – 204. 

Corollary  : If gcd(a,n) = 1 then 0(a) modulo n divides (n) .  
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A proof can be found [20] in Page 98. 

 

Theorem :   Let n = 1, 2 , 4, p , or 2p , where p is an odd prime.  If gcd(a,n) = 1, then the congruence xb  a ( mod n) has gcd 

(b, (n)) solutions or no solutions, according to whether a(n)/gcd(b,(n))  1 ( mod n) or not.  

1.5 Computational Primitives 

Number theory is the source of several computational problems that serve as primitives in the design of cryptographic 

schemes.  

 

 The security of many cryptographic techniques depends upon the hardness (intractability) of a certain computational 

problems.  

 We only review the “Integer Factorization” and “Discrete logarithm” problems, which are the most widely – used 

computational problems in public key cryptographic schemes.  

1.5.1 The Integer Factorization Problem : The integer Factorization problem, can be informally defined as follows :  

 “Given a positive integer n, find its prime factorization, that is, write ke

k

ee p....ppn 21

21
=  , where the pi are pair-

wise distinct primes and each ei  1”.  

  

This problem is believed to be hard for general n where n is large.  Some ingeneous methods have been devised in an 

attempt to factorize large composite numbers n.   The three methods that are most effective on very large numbers are quadratic 

sieve, the elliptic curve method and the number field sieve.  Other well known methods that were precursors include Pollard’s 

rho-method and P-1  method, William’s P+1 method, the continued fraction algorithm, and of course, trace division.  A good 

overview of factoring methods can be found in [28]. 

  

 We remark that the integer factorization problem and its related computational problems were used to build up various 

cryptographic schemes by RSA [28],  Rabin [27], Okamoto and Uchiyama [21] and Paillier [23].  

 

1.5.2  Discrete Logarithms :  

 Another widely used computational problems is the Discrete Logarithms problem.  

 

 Let G be a finite cyclic group of order n with generator g.  For a more concrete approach, one may find it convenient to 

think of G as the multiplicative group of integers modulo p ( for p prime).  

Definition :   

Let G be a finite Cyclic group of order n.  Let g be a generator of G, and y  G.  The Discrete logarithm of y to the 

base g, denoted by logg y, is the unique integer x, 0  x  n – 1, such that y = gx .  

 The discrete logarithm problem, which we simply call the “DLP”, can be informally defined as follows :  

 “Given a prime p, a generator g of Zp
*, and an element   

y  Zp
* , find the integer x, 0  x  p – 2  such that y = gx mod p”.  

 As in the case of factorization, efficient technique exist for solving the discrete logarithm problem when the group G 

has a particular structure, an example of such a technique being the Pollig – Hellman algorithm [24], which efficiently computes 

discrete logarithms when the group G has order 

 

 

n = r21 a

r

a

2

a

1
p......pp , where  p1 , p2 ,…, pr are primes less than or equal to a small bound B. A good overview of techniques for 

calculating discrete logarithms can be found in [14].  

 

1.5.3  Diffie – Hellman Problem   

 

The Diffie–Hellman problem is closely related to the well studied discrete logarithm problem ( DLP). The Diffie – 

Hellman problem (DHP) is the following: 

  

 “Given a prime p, a generator g of Zp
* and elements ga mod p and gb mod p, find gab mod p”. 
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The generalized Diffie – Hellman problem (GDHP) is the following :  

  

“Given a finite cyclic group G, a generator g of G, and group elements ga and gb , find gab” .  

 Suppose that the discrete logarithm problem in Zp
* could be efficiently solved.  Then given ( g, p, ga mod p,  gb mod p), 

one could first find a from ( g, p and ga mod p) by solving a discrete logarithm problem, and compute ( gb)a = gab mod p.  Thus, 

the DHP is no harder than DLP.  

  

 

For attack algorithms on the Discrete Logarithm problem in a general group D Shank’s “baby–step , gaint step ” and 

Pollard’s  methods are used.  As a sub exponential algorithm for solving the DL problem in Zp
* , the “index calculus ” method 

is well known.  

 Finally, we remark that there have been a large number of cryptographic schemes based on the above problems.  

Examples include the digital signature schemes based on the Discrete Logarithm problem such as ElGamal [6], Schnorr [30], 

and Digital singrutune standard (DSS) [19] ; the public key encryption schemes based on DHP such as Pointcheral [25], Beak – 

Leen –Kin  [1], Tsiousnis – Yung [33], and Cramer – Group  [4]. 

 

The Quadratic Residuosity Problem :  

 

 The security of the Gold Wassar – Micali probabilistic encryption scheme is based on the hardness of the quadratic 

residuosity problem (QRP).  

Definition : (To be defined quadratic residue) 

 

Definition : (QRP): Given an odd composite integer n and a  Jn (the Jacobian symbol), decide whether or not a is a Quadratic 

residue modulo n.  

 

1.6  Cryptography 

 

The word Cryptology stems from Greek meaning “hidden word”, and is the umbrella term used to describe the entire 

field of secret communications.  Cryptology splits into two subdivisions : Cryptography and Cryptanalysis.  

  

Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, 

data integrity, entity authentication, data origin authentication and non – repudiation.  The Cryptanalyst seeks to undo the 

Cryptographer’s work by breaking a cipher or by forging coded signals that will be accepted as authentic.  

 

 General information as Cryptography can be found in [16] , [32], and [31];  There are two major types of 

Cryptosystems.  One is Symmetric – key Cryptosystems and the other is public – key cryptosystems.  We will pay particular 

attention to public – key cryptosystems.  Thus, we give a formal definition of a Cryptosystem.  

 

Definition :   A Cryptosystem is a five – tuple ( M,C, K, E, D), where the following conditions are satisfied.  

1. M is a finite set of possible plain texts or messages.  

2. C is a finite set of possible cipher texts or cryptograms.  

3. K is a finite set of possible keys.  

4. For each k  K, there is an encryption rule Ek   and a corresponding decryption rule Dk  D. Each Ek : M → C and 

Dk : C → M are functions such that  Dk (Ek(m)) = m for every message m  M.  

 

 The main property is property 4.  It is the property that enables a user to decrypt a received ciphertext, since Dk(Ek(m)) 

= m for all messages m  M .  For unambiguous decryption, it is obviously required that Ek(m1)  Ek(m2) if m1  m2 .  

Otherwise , if Ek(m1) = Ek(m2) , m1  m2 , decryption is not unique, and therefore it is not possible for a user to decide whether 

the intended message was m1 or m2 upon receipt of Ek(m1) = Ek(m2). 
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1.6.1  Symmetric – Key Crytography 

 Consider an encryption scheme consisting of the sets of encryption and decryption transformations { Ek | k  K } and { 

Dk | k  K }, respectively, where K is the key space.  The encryption scheme is said to be symmetric – key if for each 

encryption or decryption transformation pair (Ek , Dk ), it is computationally “easy” to determine Dk knowing only Ek and to 

determine Ek from Dk .  

 Since Ek = Dk in most practical symmetric – key encryption schemes, the term symmetric – key becomes appropriate.  

Other terms used in the literature are single key, one – key, and conventional encryption,  

 

Key  Ek = Dk 

 

Plaintext      Encryption  Cipher Text     Decryption           Plaintext 

    

 

Symmetric Cryptography 

 

 

1.6.2  Public – Key Cryptography : 

  

 The concept of public key cryptography was first introduced by Diffie and Hellman [5]  in 1976.  The main motivation 

for public key cryptography is to remove the burden of key sharing in the symmetric – key cryptography in which a separate 

key needed for each pair of users to communicate in private. More precisely, if there are n users who want to exchange secret 

data using the symmetric key cryptography, n(n-1)/2  keys are needed and this number increases rapidly as the number of users 

grows.  Yet, in public key cryptography, each user creates a pair of keys, one of which is to be publicized while the one is kept 

secret.  The publicized key, referred to as “public key ” , is used as encryption key, but the secret key, referred to as “private key 

” , is used as decryption key.  As a result, there is no key sharing problem as in symmetric key cryptography.  Another 

remarkable achievement of public key cryptography is that one can construct a digital signature scheme by using the private key 

as signature generation key while using the public key as verification key.  

 

1.7  Public – Key Encryption 

 

A public key encryption scheme is one of the fundamental public key cryptographic schemes and can be described as follows.  

*  ( descryption of Alice & Bob) 

 

 Key Generation : The Bob ( receiver ) creates his private key and public key pair, 

which we denote by SKB and PKB respectively.  

 Encryption : Using Bob’s public key PKB , the Alice ( sender ) encrypts her 

message m, which we call a ‘plain text ‘ and obtains a ‘ Cipher 

text ’  C.  

 Decryption : Upon receiving the cipher text C from Alice, Bob decrypts it 

using his private key SKB to recover the plain text m.  

 

The following figure illustrates schematic out line of a public key encryption scheme.  

Plain text  Encryption     Cipher text Decryption  Plain text 

Alice         Bob 

Of course, Bob’s public key PKB should not compromise the secrecy of the private key SKB .  This is an important 

property is guaranteed by the trapdoor one way function which can be informally defined as follows :  

 

Definition :  One – way function : A one way function is a function f : X → Y such that for each x  X ( domain ), it is easy to 

compute f(x) ; but for all y  Y  (range), it is computationally infeasiable to find any x such that y = f(x).  
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Definition : Trapdoor One-way Function. A trapdoor one – way function is a one way function f with the additional property 

that gives some extra information (called the trapdoor information), it becomes computationally feasible to compute an x for 

any y  Y  such that y = f(x).  

In their seminal paper [5], Diffie and Hellman constructed a trapdoor one–way function based on module 

exponentiation.  This function made it possible for them to design a surprising protocol in which the remote users who have not 

met each other before can share the common secret key. This protocol is known as the “Diffie – Hellman key exchange 

protocol”.  

However, the first practical realization of public key  

(encryption) Cryptosystem was accomplished by Rivert, Shamir and Adleman [28] in 1978.  Their public key (encryption 

scheme) cryptosystem , which we simply call “RSA public–key cryptosystem ” .  This cryptosystem works in Zn, where n is the 

product of two large primes p and q, and its security is based on the difficulty of factoring n.  

 

The RSA cryptosystem can be described as follows :  

Key Generation : The receiver Bob chooses large primes p and q at random ; compute n = pq ; computes (n) = (p-1)(q-1)  

choose a random integer e, 

 where 0 < e < (n) such that gcd ( e, (n) ) = 1 ; using the Euclidean algorithm to compute the unique integer d, where 0 < d < 

(n), such that ed  1 ( mod (n) ) ; publicize his public key PKB = ( n, e ) while keeps his private key SKB = (p,q,d) .  

 

Encryption : Using Bob’s public key PKB , the sender Alice represents her message m as an integer in the range 0, 1 2,…, (n-1) 

and encrypts m by creating a ciphertext c such that  

C = me ( mod n ) 

Decryption : Upon receiving the cipher text c from Alice, Bob decrypts it using his private key SKB and recover the plain text 

m by computing.  

m= cd ( mod n ) 

Note that the one–wayness of the above RSA scheme is based on the intractability of computing the e–th root of a 

cipher text c modulo integer n, which is related to the “Integer Factorization Problem ”.  

Soon after Rivest , Shamir , and Adleman proposed the above encryption scheme, ElGamal [6] constructed a new 

Public – key Cryptosystem , which can be described as follows .  

 

ElGamal public – key cryptosystem : This cryptosystem can be based on any family of groups for which the discrete 

logarithm is considered intactable.  Usually a subgroup Gq of order q of Zp is used, where p, q are large primes satisfying  q |p-1.   

We present the construction in the group Zp , where p is a large prime.  

 

Key generation : The receiver Bob chooses large prime p and a generator g of the multiplicative group Zp of the integers 

modulo p.  Bob also selects a random integer  , 1    p – 2, and computes  h = g.  He publicizes his public key PKB = (p, 

g, h ) while keeps his private key SKB =  .  

 

Encryption :   Using Bob’s public key PKB , the sender Alice encrypts her message m ( 0  m < p ) for Bob.  Alice do the 

following :  

 Select a random integer k, 0  k  p – 2 , computes x = gk , y = m.hk and send this ciphertext c = (x,y) to Bob.  

 

Decryption : Upon receiving the cipher text C from Alice, Bob decrypts it by using his private key SKB(=) and recovers the 

plain text m by computing  


=
x

y
m  .  

1.8  Probabilistic Encryption 

 

 In 1948, Glod wassar and Micali [9] introduced the notation of probabilistic encryption. A probabilistic encryption 

method allows one to encrypt a fixed value in many different ways. Thus, even given the encryption of a value and details of 

encryption mechanism, it is not necessarily possible for an adversary to determine or not the encryption represents the 

encryption of a chosen value. 

 Gold Wassar and Micali develop a bit encryption function based on the problem of quadratic residusosity problem. 
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 “QRP: Given and odd composite positive integer n and an integer z having Jacobian symbol +1. Decide whether are 

not z is a quadratic residue modlo n”. 

 This is a simple effective polynomial time procedure originally due to Gauss [8] which computes the Jacobian symbol 

of an integer with respective given modules. There is, however no known polynomial time procedure to, without factorization of 

n, determine whether or not an integer with Jacobian symbol +1 to quadratic residue modules. In addition, given a single integer 

z of Jacobian symbol +1 which is not in Qn, it is possible to uniformly select quadratic residues or quadratic non-residues 

modules, even if the factorization of n is not known. 

 Thus, a probabilistic public-key bit encryption function proposed by Gold Wassar and Micali can be defined by a user 

by selecting an n of known factorization n = pq, where p,q are distinct odd primes and realizing this n together with a z of 

Jacobian symbol +1 which is not in n. An encrypted bit may be sent to his user by realizing a quadratic residue to indicate a zero 

or a quadratic non residue of Jacobians symbol +1 to indicate a one. The user which posses the factorization of n can easily 

determine which is the case. Without the factorization, however distinguishing between the how cases is an apparently difficult 

problem.  

1.9  Digital Signature Scheme 

 Another fundamental public key cryptographic scheme is a digital signature scheme, whose concept was first proposed 

by Diffie and Hell man [5]. As mentioned earlier, the ability to construct a digital signature scheme is a great advantage of 

public key cryptography over symmetric-key cryptography. A digital signature scheme can be described as follows: 

Key generation :  The signer Alice creates her private key and public key pair, which we denote by SKA and PKA respectively. 

Signature Generation : Using her private key SKA, Alice creates a signature  on his message m. 

Signature verification: Having obtained the signature  and the message m from Alic, the verifier Bob checks whether  is a 

genuine signature on M using Alic’s public key PKA. If it is, he returns “Accept”. Other wise he returns “Reject”. 

 Since only a single entity is able to sign a message and the resulting signature is verifier by anybody in digital 

signature, a dispute over who created the signature can be easily settled. This often called “non-repudiation”, is one of the 

important security services that digital signature schemes can provide. 

 Indeed, non-repudiation is an essential security requirement in electronic commerce applications. 

Key Generation:  The signer Alice chooses large primes p and q at random; computes n=pq; computes  (n) = (p-1) (q-1); 

chooses a random integer e<(n) such that gcd  

  (e, (n)=1, computes the integer d such that ed=1 (mod  (n)); Public her private key PKA=(n,e) while keys her private key 

SKA=(p,q,d) secret.] 

Signature generation:  Using her private key SKA, Alice creates a signature on her message m by computing  =md mod n. 

Signature Verification : Having obtain the signature  and the massage m from Alice, Bob checks wether m= e (mod n). 

 Using Alice’s public key PKA. If the above equation holds Bob returns “Accept”. Otherwise, he returns “Reject”. The 

unforgeability of the above RSA signature scheme sis again based as the intractability of computing eth root of a Cipher text C 

modulo integer n. 

 We remark that the construction of signature scheme bases on the “Discrete logarithm problem, which we discussed in 

section was given by ElGamal [6].  
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CHAPTER – II 

INTRODUCTION TO ELLIPTIC CURVES AND 

ELLIPTIC CURVE CRYPTOGRAPHY 

 

2.1 Introduction 

From the beginning of the public key cryptography there are two major cryptosystems namely RSA & ElGamal that 

seem to defeat all attacks. For this reason, these two cryptosystems are the most respected and widely used public-key 

cryptosystems now a days. One can use both cryptosystems for encryption, decryption and digital signature schemes. All 

important security standards cover those cryptosystems, so it should be safe to use implementations of these systems. 

Elliptic curve cryptosystems were invented around 1985 independently by Miller [17] and Koblitz [11]. Since their 

introduction a broad discussion on their security and efficiency has been carried on. It is very efficiency that makes them so 

interesting for us to day. This is due to the fact that information technology is developing very fast. For example, most 

computers today do not look like the old fashioned personal computers anymore. We use handhelds, and mobile phones and of 

course we have a need in securing communication on these devices. But in this case there have to be several constraints taken 

into account: this is very limited memory and computing power on these device and it not possible to spend much band width 

for communications over head. What we need is a cryptosystem with small keys, and a small signature size. Efficient encryption 

/ decryption is not so important because there operations are usually done with a private key cryptosystem.  

Elliptic curve cryptosystem has exactly the desired properties. This comes from the fact that there are no sub-

exponential algorithms for Elliptic curse Discrete Logarithm Problem known to day. This means that we can use shorter keys 

(compared to the other cryptosystems) for high security levels.  

2.2. Contribution  of this chapter 

In this chapter we will discuss several aspects of elliptic curves and elliptic curve cryptography. First we will treat 

them more as mathematical objects, and then we discuss more cryptography related Stuff. Everything is this chapter is written in 

a cryptographers view. This means, we know same properties that a cryptosystems must have, and we asserts that they hold for 

elliptic curve cryptography.  

2.3 Basic Facts about Elliptic Curves  

Definition-1.  An elliptic curve E over the field F is a smooth curve in the so called “long weierstrassform”.   

 F
i

a,
6

aX
4

a2X
2

a3XY
3

aXY
1

a2Y +++=++  (1) 

 We let E(F) denote the set of points (x,y) Є F2 that satisfy this equation, along with “a point at infinity” denoted ∂. 

 Note that smooth means that there is no point in E(
−

F ) where both partial derivatives vanish. The definition given 

above is valid for any field. But in cryptography we are only interested in finite fields. Considering only finite fields we get an 

“easier’ equation. Two finite fields are of particular interest. The finite field Fp with p Є P elements, because of it’s structure, 

and the finite field mq
F with q = pr elements, since setting p = 2 the arithmetic in this field will be well suited for 

implementations in hardware. 

2.3.1 Elliptic Curves over Prime Finite Field 

We start with Fp (p Є P, p > 3, char (Fp) ≠ 2,3)1 and perform the following change of variables  

3

2
a

xx −→    

2

axa
yy 31

+
−→  

Let’s take a look what is happening to the left side after the substitution for 

Y : (Y-a1X+a3)/2)2 + a1X(Y-(a1X+a3)/2) + a3 (Y-(a1X+a3)/2  
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=……=Y2 –a1
2X2/4 – a1a3X/2 –a3

2/4 

Both, XY and Y have vanished, so their coefficients a1 and a3 must equal zero! That reduces the left side to a singe to a 

single Y2. If we make the substitution for X and take a look at the right side of (1) we get :  

(X-a2/3)3 + a2(X-a2/3)2 +a4 (X-a2/3) + a6  

= ….. = X3 + a2/9+a4 )X+2a2
3/27-a2/3a4a6  

= ….. Setting baaa
3

1

2

3
a

27

2
andaaa

9

1
642

2
4 =−=







+   

we have the much nicer form X3+aX+b. In Fp equation (1) reduces to  

   .baXXY 32 ++=          (2) 

2.3.2 Elliptic curve over Binary Finite Fields 

Now we work in the field (GF(2m) where we have characteristic=2. Here we only consider so called” nonsupersingular 

curves”. They have the property a1≠0. So we can make the following change of variables: 

    1

32

1
a

a
XaX +→

 

3

1

2

34

2

13

1
a

aaa
YaY

+
+→  

This leads us to following definition. 

Definition 3. A (nonsupersingular) elliptic curve E over the finite field F2
m is given through an equation of the form  

  Y2+XY = X 3+aX2+b,  a, b ЄF2
m.     (3) 

2.3.3 Addition Law 

In order to define a cryptosystem on the set of points on an elliptic curve, we need to define an algebraic structure on 

the points. The easiest algebraic structure which provides us with all necessary tools is the group. Therefore we need to define 

an neutral element, inverse element, and the addition of two elliptic curve points which needs to be associative. 

Definition 4. Let E be an elliptic curve over Fp or F2
m

 , and let P and Q be two point on E. 

1. Zero element: If P is the point ∂, then we define – p to be ∂. For any point Q we define ∂ +Q to be Q. In Fp we can 

visualize ∂ as sitting infinitely far up the y-axis  

2. Inverse element: In Fp we define the negative of the point P=(x,y) to be      –P=(x,-y). If Q= -P, then we define P+Q= ∂. 

For F2
m we define –P =(x,x+y). 

3. P+Q: If P≠Q, then we shall soon show that the line l= PQ  intersects the curve in exactly one more point R.  Then we 

define P+Q to be–R, that is the inverse of the third point of intersection. 

4. 2P: Let l be the tangent line to the curve at P, let R be the only (the third) point of intersection of l with the curve, and 

define 2P = -R. 
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This set of rules can be summarized in the following succint manner:  

The sum of the three point where a line intersects the curve is zero. 

 

 

Fig. I : Point addition 

We now show, why there is exactly one more point where the line l through P and Q intersects the curve, and we 

derive formulas for the point addition. We restrict or calculations here on the field Fp because the other case can be treated in the 

same fashion. Let P=(x1,y1)Q=(x2, y2), R(x3, y3) we’d like to express x3 and y3 in terms of x1, y1,x2,y2. 

We first discuss the case where P≠Q. Let y=αx+β be the equation of the line through P and Q.  Then we have 

.11

12

12 xyand
,xx

yy
−=

−

−
=  A point (x,αx+β) lies on the elliptic curve if and only if (αx+β)2 = x3+ax+b. Thus, there 

is one intersection point for each root of the cubic equation. We already know the two roots x1and x2, because they correspond 

to the points P and Q on the curve. Since there are at most three roots of the cubic equation, we conclude that the third root must 

equal to x3.  It is easy to show that the sum of the roots of a monic polynomial is equal to minus the coefficient of the second –

to-highest power, so we conclude that this third root is x3=α2-x1-x2. (Compare the coefficients of the equations (x-x1) (x-x2) (x-

x3) and  x3-(αx+β)2  +ax+b).  We also know that  

y3 = - ( (αx3+β) = α(x1-x3)-y1 

The case when P=Q is similar, except that α is now the derivative dy / dx at P. Implicit differentiation of equation (3) 

leeds to  = (3x1
3+a)/2y1. and we obtain the formula for the coordinates of 2P. The following table lists all obtained formulas 

together with the formulas for F2
m. 

 Fp F2
m 

P+Q 

21

2

12

123 xx
xx

yy
x −−









−

−
=  +++









+

+
+









+

+
= 2x1x

xx

yy

xx

yy
x

21

21

2

21

21

3
 

 

( )
131

12

123 yxx
xx

yy
y −−









−

−
=  ( )

1321

21

213 yxxx
xx

yy
y +++









+

+
=  

2p ( )( )
1

2

1

2

13
x2y2/ax3x −+=  

2

1

2

13
x

b
xx +=  

 ( )( ) ( )
31

2

1

2

113
xxy2/ax3yy −++−=  

33

1

1

1

2

1

3 xx
x

y
xxy +








++=  

-P )y,x( −  )yx,x( +  

2.4. Properties of Cryptographic Interest  

 Here we discuss some topics, which are of interest for cryptographers.  We already defined an algebraic structure 

called “elliptic curve” and found a way to make the set of points on such a curve to an abelian group.  Basically we could start 

building a cryptosystem, but there are some more questions that should be considered in advance.  
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• How “big” is an elliptic curve ? 

• How do I find a point on an elliptic curve ? 

• How do I find a curve ?  

In the rest of this section we will mostly deal with the finite field Fq, where q = pr. 

2.4.1 Calculating the number of points on an elliptic curve over Fq : 

With the following easy counting method it is possible to give an lower and an upper bound for the number of Fq points.  

Therefore we choose an x  Fq  and assert if there is a corresponding y on the curve i.e. we look if f(x) = x3 +  + b is a square 

in Fq.  We restrict our considerations to the case q = p.  Then we can introduce the (easier)2 notation which is used to work with 

squares, or how mathematicians call them “quadratic residues” (short QR). 

Definition 6 (The Legendre symbol).  Let a be an integer and p > 2 be a prime.  The Legendre symbol (a/p) is defined as 

follows : 

   0,  if p/a; 

 (a/p) =   1, if a is quadratic residue modulo P 

  -1, if a in not a quadratic residue modulo P 

 The Legendre symbol tells us whether or not an integer is a quadratic residue modulo p.  A simple method to compute 

the value of the Legendre symbol is given in the next proposition. 

 

Proposition 2 

 (a/p) = a(p-1)/2 mod p. 

Proof.  For the trivial case where a = 0 both sides are ≡ 0 mod p.  suppose a >0 and p  a.  Fermats little theorem states that the 

square of a(p-1)/2 is 1, so a(p-1)/2 itself is + 1.  Let g be a generator of Fp
* and let a = gj is a quadratic residue if and only if j is 

even.  And a(p-1)/2= gj (p-1)/2 is 1 If and only if j(P-1)/2 is divisible by (P-1) i.e. if and only if even.    Thus both sides are + 1 in Fp, 

and each side is +1 if and only if  is a square. 

Depending whether f(x) is a quadratic residue or not modulo q, we can have the following cases. 

➢ f(x) is QR :  Then there are two points (x, + y) 

➢ f(x) divides p : Then there is a single point (x, 0). 

➢ F(x) in not QR : Then there is no point 

Putting all three cases into one formula results in  

( ) 
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2.4.2 Constructing an Elliptic curve over a given finite field 

We motivate this section with the following 

Example 2. Let E be the elliptic curve given through the equation y2 = x3 + 3x + 1 over Fp, P = 107 + 19. The order of the curve 

is n =  E (Fp) = 9999846  

= 2.32. 347. 1601 = 18.347. 1601. We take the curve points P = (2,4417259) and  

Q = (1, 866032) with Q = xP, x unknown. If we want to determine x we have to solve the elliptic curve discrete logarithm 

problem which is the analog of the discrete logarithm problem and will be defined more formatly in the next section. This 

problem is the underlying problem of all cryptosystems based on elliptic curves and has to be hard! But know look at this: Since 

we know the factorization of  n we get the following set of equations  

)18(14xgivenQ
18

n
P

18

n
x =  

)347(18xgivenQ
347

n
P

347

n
x =  
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)1601(548xgivenQ
1601

n
P

1601

n
x =  

 We know for example that 18. n/18P = nP = ∂ so we can reduce the space for the possible values of x significantly (we 

just have to look between zero and 17). Now we can easy check every x and get the relation x  14 (18). According to this 

method we can obtain all of the left equations. Then just have to apply the Chinese remainder theorem to get x = 5553122.  

The method sketched in the example is called Silver-Pohlig-Hellman method. It works so well in the example because 

n has small divisors (one says E has “smooth” order). It is clear that for cryptographic purposes one should avoid those curves!  

 This makes our effort in obtaining curves even more difficult. We have to find a curve (over a given finite field) which 

does not have a smooth order and additionally has a base point with large (prime) order. This can be accomplished by the 

following four approaches: 

 

• Select a curve equation at random, compute its order directly, and repeat this process until an appropriate order is 

found. 

 

• Select curve coefficients with particular (desired) properties, compute the curve order directly, and repeat the process 

until an appropriate order is found.  

• If q=2m where m is divisible by a “small” integer d, then select a curve defined over F2
d and compute its order over 

F2
m.  Repeat if possible until an appropriate order is found. 

• Search for an appropriate order, and construct a curve of that order. 

2.5 Elliptic Curve Cryptosystems 

We are familiar with public key cryptography know the definition of the discrete logarithm problem in the 

multiplicative group of a finite field. We can give an analog definition for the group of points on an elliptic curve. 

Definition :  If E is an elliptic curve over Fq and B Is a point of E, then the discrete log problem on E (to the base B) is the 

problem, given a point P  E, of finding an integer x  Z such that xB = P if such an integer x exists. 

What can we say about the hardness of this problem?  Until 1990, the only discrete log algorithms known for an 

elliptic curve cryptosystem were the ones that work in any group.  These are exponential time algorithms, provided that the 

order of the group is divisible by a large prime factor.  Menezes, Okamoto and Vanstone found a new approach to the discrete 

log problem on an elliptic curve.  They used the Weil pairing to embed the group of points on E into the multiplicative group of 

some extension field Fqk  It is essential for the extension degree k to be small.  The only elliptic curves for which k is small are 

the so-called “super singular” curves.  

 

2.5.1 Embedding plaintext on an elliptic curve 

 Suppose we would like to encrypt some plaintext with ECC. There has to be a method, which takes some arbitrary text 

and embedded it in elliptic curves, i.e. which gives a bisection between the points on an elliptic curve and a plaintext block. We 

sketch such an algorithm. 

1.  Step:  We choose an alphabet with N letters and fix the length l of a plaintext block. The characters of the alphabet are 

then identified with the numbers 0, ….., N-1. With the following assignment we get a bijection between the plaintext blocks w 

and the numbers       0  xw  Nl :  

w = (a0a1…al-1) → xw = aoNl-1 + a1Nl-2 + … + a1-2 N + al-1, 0  xw  Nl :  

Idea :  For such an xw there need not be a point on the elliptic curve.  But it should be possible to find the “next” curve point x1 

close to xw efficiently. Given a number k we would like to have a high probability (i.e. 1 = (1/2)k) for xw < x1 < xw + k. 

2. Step : We choose an appropriate k, i.e. that the success probability is high and that q > kN1.  For each j we obtain an element 

of Fq through kxw + j. We take the first curve point (j0)Pw with x-coordinate  kxw, i.e. Pw = (kxw +j, *)  E(Fq). 

3.  Step : We can recover the plain text block from the point by  

xw = (x / k) 

2.5.2 Elliptic Curve Diffe-Hellman key exchange (ECDH) 
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 Suppose two communication parties, Alice and Bob, want to agree upon a key which will be later used for encrypted 

communication in conjunction with a private key cryptosystem.  They first fix a finite field Fq, an elliptic curve E defined over it 

and a base point B  E (with high order).  To generate a key, first Alice chooses a random aFq (of high order) which she keeps 

secret.  Next she calculates a BE which is public and sends it to Bob.  Bob does the same steps ie. she chooses a random 

integer b (secret) and calculates bB which is sent to Alice.  Their secret common key is then P =abBE. 

2.5.3 Analog of ElGamal 

 We start with a fixed publicly known finite field Fq, an elliptic curve E defined over it and a base point B  E.  Each 

user chooses a random integer a, which is kept secret and computes the point x = aB which is the public key.  To send a 

message P to Bob.  Alice chooses a random integer k and sends the pair of points (kB, P + k(bB))(where bb is Bobs public key) 

to Bob.  To read the message, Bob  multiplies the first point in the pair by his secret b and subtracts the result from the second 

point : P + k (bB) – b (kB) = P. 

2.5.4 Elliptic Curve Digital Signature Algorithm (ECDSA) 

 The ECDSA is the elliptic curve analog of the DSA.  ECDSA was first proposed in 1992 by Vanstone.  In response to 

NIST’s (National Institute of Standards and Technology) request for comments on their first proposal for DSS. Digital signature 

schemes are the counterpart to handwritten signatures.  A digital signature is a number that depends on the secret key only 

known by the signer and on the contents of the message being signed.  Signatures must be verifiable without access to the 

signer’s private key.  Signatures should be existentially unforgeable under chosen message attacks.  This asserts that an 

adversary who is able to obtain Alice’s signatures for any messages of his choice cannot forge.  Alice signature on a single other 

message. 

 Suppose Alice wants to send a digitally signed message to Bob.  They first choose a finite field Fq, an elliptic curve E, 

defined over that field and a base point G with order n.  Alice’s key pair is (d, Q), where d is her private and Q is her public key.  

To sign a message M Alice does the following : 

1. Choose a random number k with k:1 < k > n – 1. 

2. Compute kG = (x1,y1) and r=x1 mod n. If r=0 then go to step 1 

3. Compute k-1 mod n. 

4. Compute e = SHA-1(M) 

5. Compute s = k-1 (e+dr) mod n. If s = 0 then go to step 1. 

6. Alice signature for the message M is (r, s). 

ECDSA Signature Generierung 

To verify Alice’s signature (r, s) on the message m, Bob obtains an authentic copy of Alice’s parameters and public 

key.  Bob should validate the obtained parameters ! Bob then does the following : 

1. Verify that r, s are integers in the intevall (1, n-1) 

2. Compute e = SHA-1 (M) 

3. Compute w = s-1 mod n. 

4. Compute u1 = ew mod n and u2 = rw mod n. 

5. Compute X = u1G + u2Q.  If X =  then reject the signature. 

 Otherwise compute v = x1 and n where X = (x1, y1). 

6. Accept the signature if and only if V = r. 

ECDSA Signature Verification 

If the signature (r,s) on the message m was indeed generated by Alice, the s = k-1(e+dr) (n). With this information we 

have  

K  s-1 (e + dr)  s-1 e + s-1 rd  we + wrd  u1 + u2d (n). Thus  

u1G + u2Q = (u1 + u2d) G = kG and so v = r as required. For a discussion on known attacks and how they can be avoided consult 

(4). 
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CHAPTER – III 

TRAPDOORING FACTORIZATION ON ELLIPTIC 

CURVES OVER RINGS 

 

3.1 Introduction 

 In 1976, Diffie and Hellman introduced the concept of a trapdoor one-way function (TOF). A TOF is a function that is 

easy to evaluate but infeasible to invert, unless a secret trapdoor is known in which the case inversion is also easy.  

 

 The first implementation of a TOF was proposed by Rivest, Shamir and Adleman in 1978 [28]. Its security relies on 

the difficulty of factoring a composite number n. some other implementation of TOF have been proposed based on the difficulty 

of factoring and discrete logarithm. Form another direction, one of the recent topics in the field of elliptic curves is their 

applicability to cryptography.  The points of an elliptic curve E over a finit field form an abelian group. Hence the group E can 

be used to implement analogs of the Diffie Hellman key exchange scheme and the ElGamal public key cryptosystem as 

explained in [6] .     

The security of these analogous systems rests on the difficulty of the discrete logarithm problem on an elliptic curve. 

3.2 Contribution of this Chapter  

In this chapter we review a TOF (or public key cryptographic schemes) based on elliptic curves over a ring Zn* [13] 

although an elliptic curve E over Zn does not form a group.  The security of this TOF depends on the difficulty of factoring n.  

Although these schemes are less efficient than the RSA and Rabin schemes, this scheme seem to be move secure from the view 

point of some attacks that do not use factoring such as low multiplier attacks.  From the some reasons, even when the RSA 

system can be broken without factoring the modules, this scheme seems to remain secure. 

Also we present a public key cryptosystem based on elliptic curves over the ring Zn.  This scheme can be used for both 

digital signatures and encryption applications does not expand the amount of data that needs to be transmitted and appears to be 

immune from homomorphic attacks. The main advantage of this scheme is very little restriction on the types of elliptic curves 

and types of primes that can be used.  In addition, the system works on fixed elliptic curves.  The security of the systems relies 

on the difficulty of factoring large composite numbers. 

 

3.3 Elliptic curves over a finite field  

Let F be the field of characteristics 2,3 and let a, b  F be  two parameters such that 4a3 + 27b20 → (A1). 

 

An elliptic curve over F with parameters a, b is defined as the set of points (x,y) with x,yF satisfying the equations 

Y2=x3+ax+b → (A2) together with a special element  and called the point at infinity. 

 

Let E be an elliptic curve and let P and Q be two points on E.  The point P+Q is defined according to the following 

rules. If P= thus –P= and P+Q=Q 

 

Let P=(x1,y1) and Q=(x2,y2).  If x1=x2 and y1= -y2 then P+Q=. In all other cases the co-ordinates of P+Q = (x3,y3) are 

computed as follows. Let  be defined as  

 

21

12

12 xxif
xx

yy






−

−
=  
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




+

21

1

2

1 xxif
y2

ax3
 

The resulting point P+Q = (x3,y3) is defined as  

X3=2-x1-x2 

 

Y3=(x1-x2)-y1  

 

Clearly, the first equation is equivalent to x3=2-2x1 when P=Q.  All computations are in the field over which E is 

defined.  In particular in the field is Fp, all computations are modulo P. 

 

 It is straight forward to verify that the defined addition operation satisfies the axioms for a group.  

 The order of the group, denoted by Ep(a,b) , is given by ( ) 







+








+=
=

1
P

Z
1)b,aEp

p

1x
 Where (Z/P) is the 

Legender Symbol and   

 

 Z ≡ x3 + ax + b (mod P) 

 

It is well know that ( ) p211,1Pb,aEP ++=  For every Elliptic cure over FP  

 

Complementary group on a given elliptic curve : 

Let P be a prime > 3 and again a, b are integers chosen such that (A1) holds. In addition, Let )b,a(Ep  denote the 

elliptic curve group module P whose elements (x,y) satisfying equation (A2), as before, but y is an in determinant in the field Fp 

for non-negative integer values of x.  i.e. y is of the form y=uv (mod P), where u is non-negative integer < P and v is a fixed 

quadratic non-residue modulo P. The identity element, , and the addition operations are identical to those defined in above. It 

is clear that all the group axioms hold for the above definition.  

The order of this complementary group is given by 











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


−+=

= P

Z
11)b,a(E

p

1x
p

 where 








P

Z
 is the legendere symbol and 

z=x3+ax+b (mod P). 

 

3.4 Elliptic curves over a ring  

Consider elliptic curves over the ring Zn, where n is an odd composite square free integer. Similar to the definition of 

Ep(a,b), an elliptic curve En(a,b) can b defined as the set of pairs (x,y) + zn
2 satisfying y2=x3+ax+b (mod n) together with a point 

 at infinity.  An addition operation on En(a,b) can be defined in the same way as the addition operation an Ep(a,b), simply by 

replacing computations in Fp by computations in Zn. However two problems occur. The first problem is that because the 

computation of  requires a division which in a ring is defined only when the division is a unit, the addition operation on En(a,b) 

is not always defined. The second problem, which is related to the first is that En(a,b) is not a group. It seems therefore 

impossible to base a cryptographic system an En(a,b). In the following we represent a natural solution to these problems. 

Let n=Pq in the sequel be the product of only two primes as in the RSA system. Moreover, the addition operation an 

En(a,b) described above, whenever it is defined, is equivalent to the group operation on Ep(a,b) XEq(a,b). By CRT, every 

element CZn can be represented uniquely as a pair (Cp,Cq) where CpEZp and CqZq. Thus every point P=(x,y) on En(a,b) can 

be represented uniquely as a pair [Pp, Pq]=[(xp,yp), (xq,yq)] where Pp  Ep(a,b) and the points at  an Ep(a,b) are exhausted 

except the pairs of points of (Pp, Pq) for which exactly one of the points Pp and Pq is the point at .  It is important to note that 

when all prime factors of n are large, it is extremely unlikely that the send of two points an En(a,b) is undefined.  Infact if the 
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probability of the addition operation being undefined were non-negligible then every execution of a computation on En(a,b) 

would be a feasible factoring algorithm, which is assumed not to exist. Therefore, the first problems can be solved by 

considering the occurable probability.  

 The second problem, that En(a,b) is not a group, can be solved by the following lemma i.e., although we can’t us the 

proportions of a finite group directly, we can use a property of En(a,b) which is similar to that of a finite group. The following 

lemma can be easily determined from the CRT. 

Lemma : Let En(a,b) be an Elliptic curve state that GCD (4a3+27a2,n)=1 and n=Pq.  Let Nn be lcm (Ep(a,b) + 

Eq(a,b))  

 

Then, for any P  En (a,b) and any integer K, (K.Nn+1).P=P 

 

3.5 KMOV public key system based on Elliptic curves over Zn 

Key Generation : U chooses p,q state that pq2 (mod 3) 

User U computes n=pq and Nn=lcm(p+1, q+1) 

Also user U chooses an integer e state that (e, Nn)=1 and computes an integer d state that ed1 (mod Nn) 

A’s secret key is d, 

A’s public key is n, e. 

Encryption :  A plain text M=(mx,my) is an integer pair,  

where mx  Zn,  my   Zn. 

Let M = (mx,my) be a point on the elliptic curve En(0,b) 

 

Sender A encrypts the point M by encryption faction E(.) with the receiver’s public key e and n as C = E(M) = e.M 

over En(a,b) and sends a ciphertext pair C=(Cx,Cy) to a receiver B. 

 

 

Decryption : Receiver B decrypts a point C by decryption function D(.) with his secret key d and public key n as M = D(c) = 

d.c over En(a,b) 

 

3.6 Proposed Scheme : 

Select two primes and let n=pq 

Select an elliptic curve y2=x3+ax+b with the parameters a and b,  

where gcd of (4a3+27b2, n) = 1 

 

Let  Ep(a,b)= 1+p+,   Eq(a,b)= 1+q+ 

 

 )b,a(E
p = 1+p-,  Eq(a,b) = 1+q- 

 

Where  2p,  2q, for every elliptic curve Fp and Fq 

Let n represent the plaintext and C be the cipher text  

(where 0  mn,  C  n-1, 0  n-1) 
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Encryption : 

 

The encryption is defined as  

(c,t) = (x,y) # e (mod n)        (1) 

Where (x,y)#e (or ep) denotes the point p=(x,y) Multiplied by e. Multiplication of a point P by i is defined as the 

addition of the point P to itself 

i times. 

 

Decryption  

Decryption is defined as  

(x,y) = (c,t)  # di (mod n)        (2) 

Where e.di = 1 (mod Ni), i=1 to 4       (3) 

And gcd (e, Ni) = 1, i=1 to 4       (4) 

N1 = lcm (P+1+, q+1+), if (w/p) = 1 & (w/q) = 1   (5) 

N2 = lcm (P+1+, q+1+), if (w/p) = 1 & (w/q) ≠ 1   (6) 

N3 = lcm (P+1+, q+1+), if (w/p) ≠ 1 & (w/q) = 1   (7) 

N4 = lcm (P+1+, q+1+), if (w/p) ≠ 1 & (w/q) ≠ 1   (8) 

Z   = x3+ax+b (mod n)        (9) 

y=z           (10) 

w=C3+ac+b (mod n)        (11) 

and t=w          (12) 

Alternatively, the decryptions time may be reduced T by a factor approaching 4, by computing (2) modulo p and 

modulo q the combining the results via the CRT. 

 

Note that only the first coordinates, x and C, have to be computed in this scheme. Computation of the second co-

ordinates y and t can be avoided using the rules and algorithms described in [13]. 

 

Also note that if p,q,a and b are chosen such that  =  = 0 in equations  

(5) to (8), then Ni = lcm (p+1, q+1) remains fixed for all i, consequently di is fixed for all i, and decryption is independent of the 

Legender Symbol (w/p) and (w/q). 
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CHAPTER – IV 

TRAP DOORING DISCRETE LOGARITHMS ON 

ELLIPTIC CURVES OVER RINGS 

4.1  Introduction  

At the present time, one of the most challenging open problems in cryptography is certainly the realization of a 

trapdoor in the discrete logarithm problem.   A discrete log encryption scheme over a group G intends to encrypt a plaintext m 

by simply raising some base element gG to the power m, while decryption recovers n upto a public bound.  Motivations for 

this may be diverse.  The main advantage in comparison to other public-key techniques such as RSA or ElGamal comes from 

the additive homomorphic property of ciphertexts.  This property constitutes the necessary condition for many cryptographic 

protocols to exist in fields like electronic voting[7], key escron [26] or group signatures, to quote a few. Clearly, discovering 

novel discrete log encryption techniques has a crucial positive impact on these research domains.  In contrast direct applications 

of these for simple encryption purposes may be of more moderate interest as malleability destroys chosen cipher text security 

anyway. 

Without considering all potential applications, this chapter focus on providing and analyzing new discrete log 

trapdoors and composing their properties with the ones vacantly discovered in  [26]. 

Higher degree residuosity was introduced by Benaloh [2] as an algebraic framework to extending the properties of 

quadratic residuosity to prime degree greater than two. Since then, successive works have considerably improved the efficiency 

of residuosity – based encryption . Naccache and Stern [18] utilizing a smooth degree modulo n=pq; increased Benaloh’s 

encryption rate upto   1/5.  More recently, Okamoto - Uchiyama [22] and Paillier [23] came up with modules independent 

encryption rates of 1/3 and 1/2 respectively, basing trapdoorness as a joint use of Fermat quotients and clever parameter choices.  

Interestingly, there three cryptosystems only stand in the multiplicative groups Zn* where n=pq, p2q or p2q2 and p, q are large 

prime numbers. 

There have been several attempts, in the meantime, to realize discrete log encryption over elliptic curves instead of 

standard groups.  This was motivated by the fact that no sub-exponential time algorithm for extracting discrete logarithms is 

known so far, at least for most elliptic curves.  As a matter of fact, all such design proposals have revealed themselves 

unsuccessful.  Vanstone and Zuccherato [34] proposed a deterministic DL encryption scheme that was shown to be in secure a 

few months later by McKee and Pinch [15] and Coppersmith [3].  Independently, Okamoto and Uchiyama failed in attempting 

to design DL encryption over composite anomalous curves [22]. 

4.2  Contributions of this chapter  

 In this chapter we propose cryptosystems successfully answering the questions of [34] and [22] respectively.  With 

guaranteed semantic security relatively to well identified computational problems.  The first scheme is an embodiment of 

Naccache and Stern’s cryptosystems on curves defined over Zn, n=pq which realizes a discrete log encryption as originally 

imaged by Vanstone and Zuccherato probabilistic, our second cryptosystem relates to -residuosity of a well-chosen curve over 

the ring Zp
2
q, i.e. provides an elliptic curve instance of OU encryption scheme.  Finally we show how to extend the same design 

frame work of Paillier’ encryption [12] while preserving all security and efficiency properties inherent to the original 

cryptosystems.   

All these three schemes are reasonably efficient, simple to understand additively homomorphic, probabilistic and provably 

secure against chosen plaintext attacks in the standard model. 

Elliptic Curve Version  

4.3 Elliptic curve Naccache – Stern Encryption Scheme 

The first encryption scheme that we describe here is a variant of Naccache and Stern’s encryption scheme [12] where 

the working group is an elliptic curve over the ring Zn. The construction of such a curve is similar to the work of KMOV [12] 

that allowed to import  factoring based cryptosystems like RSA [28] and Rabin [27] on a particular family of curves over the 

ring Zn. We describe briefly their construction. 

In the sequeal, p and q denote distinct large primes of product n. Recall that for any integer K, Ek(a,b) is defined as the 

set of points (x,y) Zk X Zk such that  y2 = x3 + ax + b (mod K), together with a special element Ok called the point at infinity. It 

is known that given a composite integer K, a curve Ek(a,b) defined over the ring Zk has no reason to be a group. This problem 

however, does not have real consequences in practice when k = n because exhibiting a litigious addition leads to factors and this 

event remains of negligible probability. Furthermore, projections of En (a,b) over Fp and Fq being finite abelian groups, the CRT 

easily conducts to the following statement : 
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Lemma : (Koyamma et al.,)   

 Let En (a,b) an elliptic curve, where n = pq is the product of two primes gcd (4a3 + 27b2, n) = 1. Let us define the order 

of En (a,b) as ( ) ( ) ( )( )b,aEq,b,aE1lcmb,aE
pn

=  then for any point P En(a,b), we have │En(a,b)│, P = On
.  

Where On denote the point at infinity of En (a,b).  Although not being a group in a strict sense, the structure of En(a,b) complies 

to lagrange’s theorem and, from this stand point, can be used as a group.  

Koyama et al., take advantage of this feature by focusing curves of the following specific forms.  

 

En(o,b) : y2 = x3 + b mod n for b  Zn* - I/C. 

 

 Let p and q are both odd primes are choosen congruent to 2 modulo 3 so that the two curves EP(o,b) and Eq(o,b), b 

Zn* are cyclic groups of orders P + 1 and q + 1 (by KMOV) 

 

We also impose  P + 1 = 6 u p1, u =  Pi
i      (1) 

   q + 1 = 6 v q1, v =  Pi
i      (2) 

 

for some B smooth integers u and v of equal bit size such that  

gcd (6,u,v,p1,q1) = 1. The integers p1, q1 are taken prime.  

Let  = uv.  The base point G can be chosen of maximal order  

 = lcm (p + 1, q + 1), computed separately mod p and mod q, and recombined at the very end by Chinese Remainder Theorem 

(CRT). 

Public key  = n, b, , G 

Secret key = (p,q) or  = lcm (P+1, q+1) 

 

Encryption  

 To encrypt a message m  Z, choose a random r < n, the ciphertext C is  C = (m + r )  G 

Decryption  

 To decrypt C, first compute U is = (µ/) c = m G1. 

 To recover m, use Pohlig – Hellman and  Baby–step gain – step to recover the discrete log of u in base G1. 

 Decryption can also be performed over EP(o,b) and Eq(o,b):  in this case, one separately computes m mod u and m mod 

v.  The plaintext m is then recovered modulo  by CRT.   

4.4 Elliptic curve Okamoto-uchiyama encryption scheme 

 Here we show how to extend the setting the defined to one of the elliptic curves.  It is known that the curves Ep( b,a )  

over Fp which have to trace of Frobenius one  present the property that computing discrete logarithm on them is very easy. We 

extend the discrete logarithm recoverability property to a  

p-subgruops  of Ep2(a,b) so that the projection onto Fp gives the twist of an anomalus curve. This is done as follows. We begin 

by stating a few useful facts that derive from Hasse’s theorm. 

Lemma: Let 

−−−−

++=







bxaxy:b,aE 32

P
 mod p be an elliptic curve of order t1Pb,aE

P
=+=







 −−

where 

P2t  , than for any integers a,b such that a = ā mod p and b = b mod p, we have 

( ) ( ) ( )t1Pt1Pb,aE
2

P
++−+=  the  
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curve Ep2(a,b) is usually said to be a lift of 
2

PP
F tob,aE 







 −−

one consequence of the above lemma is that if  






 −−

b,aE
P

has 

P + 2 points, then any lift Ep2(a,b) must be of order P(P+2). 

Lemma: let 






 −−

b,aE
P

 be an elliptic curve over FP order P+2 provided that P2 (mod 3) any lift Ep2(a,b) of 

2

PP
Ftob,aE −







 −−

to  Fp
2 is  cyclic. 

Theorem 

 There exist a polynomial time algorithm that computes dLs on E[p]  

 

Proof  

Since  E[P] is the group of p-torsion points of Ep2(a,b) we observe that any point P belongs to E[P] iff it is a lift of 











−−

b,aE
Pp

where from E[P] is the kernel of the reduction map P →  p mod p.  Hence the p-adic elliptic logarithm [sec[ 

]of page-] 

 Ψp (x, y) = -
2pmod

y

x
   

is well defined and can be applied on any point of E[p]. Ψp being actually a morphism, if p=m.G stands for any arbitary points 

p,G  P[p],  

 

we have  

 
)G(

)p(
m

p

p




=  mod p, provides G ≠ ∞p2 

 

Choose two large primes P (with p ≡ 2 (mod 3)) and q of bit size k, and set    

n = pq. The user than picks integers thatSuchFb,a
Ppp


−−

Ep(ap, bp)  is of order p+2, by using the techniques such as [22]. 

He then chooses some lift Ep
2 







 −−

qq b,a of  






 −−

qqq b,aE  to Fp2 as well as a random curve  






 −−

qqq b,aE defined over Fq.  

Using CRT, the user combines Ep
2(ap, bp) and 







 −−

qqq
b,aE to get the curve En= En (a, b) where a, b  zn. Finally, the user 

picks a point a point G  En of maximal order lcm (   
q

E ,E
1p2 )and sets H = n.G. 

 

  Public key : n = P 2q,  En, G of maximal order, H  

    Private key : P 

Encryption 

To encrypt a plaintext m < 2k-1,  pick a random  r < 22k then the ciphertext  

 C = m.G + H. r 
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Decryption 

 Recover the plaintext m by computing  

 

 
( ) 
( ) G.2P

G.2P
m

p

p

+

+
=  mod P. 

4.5 Elliptic Curve Paillier Encryption Scheme 

 Here we show that how to construct an efficient yet natural embodiment of Paillier’s cryptosystem [23] on elliptic 

curves. We first extend the setting of the above section [FOO scheme] to curves defined over zn
2 where n=pq. Suppose 

Ep
2(ap,bp) is some lift of a curve of trace  P+2 defined over Fp  Considering En

2 (a,b) as the CRT of Ep
2 (ap, bp) and Eq

2 (ap, bp), it 

is easily seen that  En
2 (a,b) is of order n μ,. where  = μ (n) = lcm  (p+2, q+2). 

We extend theorem upto the present setting as follows :  

Noting that  E[n] =   μ En
2 (a,b) 

Corollary  

There exists a polynomial time algorithm that computes the discrete logarithm on E[n]. 

Proof  

This is easily proven, either by applying the theorem twice on curves E[P]  E[n] mod p2 and E[q]  E[n] mod q2  and 

then by CRT, local logarithm or more compactly by defining over E[n] an n-adic elliptic logarithm 

 Ψn (x, y) = 
2modn

y

x−
 

Provided that P = m. G for P, G     E[n] and G ≠ ∞n
2 we retrieve m by computing  

   

 

 G

n

ψ

p.
n

ψ
m =  mod n. 

 The user choose two large prime and q (with P ≡ q ≡ 2 (mod 3)) and sets n = pq. He then picks up integer 

q
Fqb,qaand

p
Fpb,pa 

−−


−−
such that 













 −−

p
b,

p
a

p
E  is of order p + 2 and  













 −−

q
b,

q
a

q
E   is of order q +2. 

Lifted curves Ep
2(ap, bp) and Eq

2(aq, bq) are chosen and combined to get En
2(a, b). Finally, a base point G  En

2 is chosen of 

order divisible by n, possibly of maximal  

order n μ. 

 Public key  : n = Pq,  En
2, G 

 Privet key  : μ =  lcm (p +2, q+2) 

Encryption:  

To encrypt a message m  Zn, Pick a random r < n, then the ciphertext C is  

 C = (m + r n). G 

 

Decryption 

The plain text can be recovered as     

 

 μ.G
n

ψ

μ.c
n

ψ
m =  mod n. 
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CHAPTER - V 

CONCLUSIONS 
 

 

 In the right of our study in this dissertation, two existing problems were studied :  “TRAPDOORING 

FACTORIZATION ON ELLIPTIC CURVES OVER RINGS” and “TRAPDOORING DISCRITE LOGARITHMS ON 

ELLIPTIC CURVES OVER RINGS”. 

 First, we review a TOF based on elliptic curves over a ring Zn.  The security of this TOF depends on the difficulty of 

factoring n.  Although this scheme is less efficient then the RSA and Rabin Schemes.  We presented a Public – Key 

Cryptosystem based on elliptic curves over the ring Zn.  This Scheme can be used for both digital signatures and encryption 

applications, does not expand the amount of data that needs to be transmitted and appears to be immune from homomorphic 

attacks.  The main advantage of this scheme is very little restriction on the type of elliptic curves and types of primes that can be 

used.  In addition the system works on fixed elliptic curves.  The security of the system relies on the difficulty of factoring large 

composite numbers. 

  

Also we presented three probabilistic encryption schemes on elliptic curves over rings.  These cryptosystems are based 

on three specific mechanisms allowing the recipient to recover discrete logarithms on different types of curves.   

More specifically, we showed how to design embodiments of Naccache-Stern, Okamoto-Uchiyama and Paillier discrete – log 

encryption schemes.  Each provided cryptosystem is probabilistic and semantically secure relatively to the high residuosity 

problem associated with its curve type.  We believe that the work in this Chapter positively concretizes all previous research 

work on discrete log encryption in the elliptic curve setting. 
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