Analysis of Iterative Channel Algorithm for MIMO OFDM systems using Doppler Spread

Hemarathi H V
Mtech, ECE
CMRIT
Bengaluru, India

Abstract—Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system operating in high mobility scenarios, channel estimation becomes a challenging issue, due to fast channel variation and severe inter-carrier interference (ICI). This paper proposes a novel pilot-aided iterative receiver, based on pilot symbols and iterative soft-estimate of data symbols and parallel interference cancellation (PIC) scheme coupled with decision statistical combining (DSC) is used to cancel the ICI and to improve the data symbols detection. These data symbols are then utilized to refine the channel estimation further, iteratively. The simulation results of both methods are compared and values obtained depict that the PIC-DSC method improve channel estimation and its BER/SNR value remains stable.

Keywords— MIMO; OFDM; DSC; PIC; BER.

1. INTRODUCTION

In a high mobility environment, the wireless channel is time variant and frequency selective causing the symbol transmission to be impaired by the Doppler spread. The Doppler spread destroys the orthogonality and creates inter-carrier interference (ICI) between OFDM sub-carriers. In addition, the channel changes significantly within one OFDM symbol. Standard channel estimation methods that assume the wireless channels to be invariant within one OFDM symbol, or apply a block-type pilot placement, cannot be used in such a high mobility system. In estimation of the time domain channel coefficients is performed by using pilot tones and by linear interpolation of the time domain channel estimates. The authors use a comb-type pilot tones placement. In least-square (LS) and minimum-mean-square-error (MMSE) channel estimation methods, together with various linear interpolation methods such as linear, second order, low pass, spline-cubic and time domain interpolation are investigated. The authors extend the channel estimation method in [1] to take into account ICI and use a comb-type pilot placement instead of a block-type pilot placement. None of these schemes however, utilize data symbols in the channel estimation process.

Recently, high mobility transmission has been considered as one of the important key features of LTE standard. This standard needs to provide support for high mobility users that move at speeds up to 350 Kn/h. When users are highly mobile, the multipath wireless channel becomes time-variant and frequency-selective within one OFDM Symbol. The Doppler spread, caused by mobility, destroys the orthogonality and creates inter-carrier interference (ICI) between OFDM subcarriers. As a consequence, the existing channel estimation methods that assume an invariant wireless channel within one OFDM symbol cannot be used for high mobility systems.

Channel estimation over rapidly time varying multipath fading channels has been considered in a number of recent papers. In estimation of time-domain channel coefficients is performed by applying a hybrid frequency/time domain channel estimation algorithm based on a linear approximation of the time variations of each channel coefficient in an OFDM symbol. However, this linear approximation is inaccurate in the presence of very high mobility. In the Doppler spread information is utilized for computing the frequency- and time-domain channel correlations in the channel estimation process. However, none of these papers exploits data symbols estimates. These estimates can be used to improve the channel estimation process. In iterative channel estimation schemes, where the detected data symbols in previous iterations are employed to refine the channel estimation, are proposed. However, the schemes in, do not take the Doppler spread information into account in their channel estimation processes.

In this paper, we design a new iterative channel estimation and ICI cancellation scheme for MIMO-OFDM systems. The proposed scheme, simultaneously utilizes the Doppler spread information and iterative estimates of data symbols in the channel estimation process. Here, each time-domain channel coefficient is approximated by a weighted time-domain channel interpolation of selected set of time-domain channel coefficients. We refer to these selected channel coefficients as time-domain markers. Then, for the rest of the channel coefficients, each channel coefficient is approximated by interpolating two selected time-domain markers. These two time domain markers are chosen in a way that they have the maximum correlation with the respective channel coefficient. The interpolation weights design of these markers, takes into consideration the Doppler spread information at the receiver. The time-domain markers are estimated by using a least square (LS) method. Once all the channel coefficients are obtained, the estimate of ICI, caused by the Doppler spread, are subtracted from the received signal by a parallel interference cancellation (PIC) module The outputs of the PIC module are then passed to the decision statistical combining (DSC) module where the decision statistics signal is obtained. Data symbols are then estimated by a detector and these estimates are utilized to iteratively refine the channel estimation. The simulation results show that the performance of the proposed iterative Doppler-assisted channel estimation with the PIC-DSC interference cancellation scheme in a high mobility environment is significantly better.
than the techniques in and is close to the performance of the system where full CSI is known and users are static.

II. LITERATURE SURVEY

Channel estimation techniques based on pilot arrangement in OFDM systems [1] deals with pilot arrangement are investigated. Channel estimation based on a comb type pilot arrangement is studied through different algorithms for both estimating the channel at pilot frequencies and interpolating the channel. Channel estimation at pilot frequencies is based on LS and LMS methods while channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Time-domain interpolation is obtained by passing to the time domain by means of IDFT (inverse discrete Fourier transform), zero padding and going back to the frequency domain by DFT (discrete Fourier transform). In addition, channel estimation based on a block type pilot arrangement is performed by sending pilots in every sub-channel and using this estimation for a specific number of following symbols. We have also implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.

Robust channel estimation for OFDM systems with rapid dispersive fading channels [2] deals with orthogonal frequency-division multiplexing (OFDM) modulation has a promising technique for achieving the high bit rates required for a wireless multimedia service. Without channel estimation and tracking, OFDM systems have to use differential phase-shift keying (DPSK), which has a 3-dB signal-to-noise ratio (SNR) loss compared with coherent phase-shift keying (PSK). To improve the performance of OFDM systems by using coherent PSK, we investigate robust channel estimation for OFDM systems. We derive a minimum mean-square-error (MMSE) channel estimator, which makes full use of the time- and frequency-domain correlations of the frequency response of time-varying dispersive fading channels. Since the channel statistics are usually unknown, we also analyze the mismatch of the estimator-to-channel statistics and propose a robust channel estimator that is insensitive to the channel statistics. The robust channel estimator can significantly improve the performance of OFDM systems in a rapid dispersive fading channel.

ICI mitigation for pilot-aided OFDM mobile systems [4] deals with the orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading due to the increase of the symbol duration. However, for mobile applications channel time-variations in one OFDM symbol introduce intercarrier-interference (ICI) which degrades the performance. This becomes more severe as mobile speed, carrier frequency or OFDM symbol duration increases. As delay spread increases, symbol duration should also increase in order to maintain a near-constant channel in every frequency sub band. Also, due to the high demand for bandwidth, there is a trend toward higher carrier frequencies. Therefore, to have an acceptable reception quality for the applications that experience high delay and Doppler spread, there is a need for ICI mitigation within one OFDM symbol.

We introduce two new methods to mitigate ICI in an OFDM system with coherent channel estimation. Both methods use a piece-wise linear model to approximate channel time-variations. The first method extracts channel time-variations information from the cyclic prefix. The second method estimates these variations using the next symbol. We find a closed-form expression for the improvement in average signal-to-interference ratio (SIR) when our mitigation methods are applied for a narrowband time-variant channel. Finally, our simulation results show how these methods would improve the performance in a highly time-variant environment with high delay spread.

A model reduction approach for OFDM channel estimation under high mobility conditions [5] deals with the orthogonal frequency-division multiplexing (OFDM) which combines the advantages of high performance and relatively low implementation complexity. However, for reliable coherent detection of the input signal, the OFDM receiver needs accurate channel information. When the channel exhibits fast time variation as it is the case with several recent OFDM-based mobile broadband wireless standards (e.g., WiMAX, LTE, DVB-H), channel estimation at the receiver becomes quite challenging for two main reasons: 1) the receiver needs to perform this estimation more frequently and 2) channel time-variations introduce intercarrier interference among the OFDM subcarriers which can degrade the performance of conventional channel estimation algorithms significantly. In this paper, we propose a new pilot-aided algorithm for the estimation of fast time-varying channels in OFDM transmission. Unlike many existing OFDM channel estimation algorithms in the literature, we propose to perform channel estimation in the frequency domain, to exploit the structure of the channel response (such as frequency and time correlations and bandedness), optimize the pilot group size and perform most of the computations offline resulting in high performance at substantial complexity reductions.

III.EXISTING SYSTEM

Channel estimation over time varying multipath fading channels is solved in a number of papers in literature. All these solutions based on linear approximation. But linear approximation is not accurate in presence of high mobility. This project proposes PIC-DSC method in combination with iterative method to get accurate results.

IV. PROPOSED SYSTEM

The proposed solution is based on iterative channel estimation with inter channel interference. In this solution, each time-domain channel coefficient is approximated by a weighted time-domain channel interpolation of selected set of time-domain channel coefficient. For the rest of the channel coefficients, each is approximated by interpolating two selected time-domain markers. These two time domain markers are chosen in a way that they have the maximum correlation with the respective channel coefficient. The interpolation weights design of these markers, takes into consideration the Doppler spread information at the receiver. Least square (LS) method is used to approximate the time-domain markers. Once all the channel coefficients are
obtained, the estimate of ICI due to Doppler spread, are subtracted from the received signal by a parallel interference cancellation (PIC) module. The simulated results of iterative and PIC-DSC method both are plotted and values are compared to know the effective method of channel estimation.

V. PILOT INSERTION LS METHOD AND PIC-DSC METHOD

\[r_q(n) = \sum_{l=0}^{L-1} h_{p,q}(l,n)x_p(n-l) + w_q(n), \]
\[(2) \]

The spot \(W_q(n) \) will be included substance white Gaussian noise. \(H_{p,q}(l,n) \) will an opportunity to make those distinct drive reaction of the Lth transporter tap the working about the individual pth convey radio wire furthermore qth accept radio wire for compass of the long run n. Furthermore, the unique moment medium carrier grid those working of the pth convey radio wire furthermore qth get antenna, including those distinct influences of the cyclic prefix (or GI), might an opportunity should make quell Concerning framework.

\[
C_{p,q} = \begin{bmatrix}
 h_{p,q}(0,0) & 0 & \cdots & 0 \\
 h_{p,q}(1,0) & h_{p,q}(0,1) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & h_{p,q}(0,N-1)
\end{bmatrix}
\]
\[(3) \]

Taking after performing those DFT around (2), those picture to qth get radio wire also kth sub-carrier Might settle on communicated Thus Concerning illustration.

\[
R_q(k) = \sum_{p=0}^{M-1} \sum_{n=0}^{N-1} H_{p,q}^{\text{opt}}(k-m)w_{p,m}x_p(m) + W_q(k).
\]
\[(4) \]

The individuals put \(W_q(k) \) will be those people DFT concerning upheaval Besides \(H_{p,q}(k) \) implies DFT in respects time-varying frequency-selective bearer \(H_{p,q}(l,n) \).

\[
H_{l,q}^{\text{opt}}(k) = \frac{1}{N} \sum_{n=0}^{N-1} h_{p,q}(l,n)e^{-j\frac{2\pi nk}{N}}.
\]
\[(5) \]

This might further express \(R_q(k) \) similarly.

\[
R_q(k) = \sum_{p=0}^{M-1} \sum_{m=0}^{N-1} H_{p,q}^{\text{opt}}(0)w_{p,m}x_p(k)
\]
\[(6) \]

Note that accepting that those carriers will make time-invariant, the worth to equation (5) could settle on non-zero recently on \(k = 0 \) under this condition, the individual inter carrier cancellation a major aspect for equation (6) disappears. Despite, around there will make a non-zero Doppler transmission; might be no more honest to goodness conflict. The individual acknowledged pointer of the entirety of cash MR accept antennas might an opportunity will a chance to be spoke will concern delineation.

\[R = hX + W. \]
\[(7) \]

Those spot \(r = [R_1, \ldots, R_M] \), Besides \(R_q = [R_q(0), \cdots, R_q(N-1)] \) will make the picked up sign to qth authority antenna, \(w = [W_1, \cdots, W_M] \), Besides \(H \) will be those urging transporter grid Previously, frequency-domain, portrayed Concerning outline.

\[
H = \begin{bmatrix}
 H_{1,1} & H_{1,2} & \cdots & H_{1,M} \\
 H_{2,1} & H_{2,2} & \cdots & H_{2,M} \\
 \vdots & \vdots & \ddots & \vdots \\
 H_{M,1} & H_{M,2} & \cdots & H_{M,M}
\end{bmatrix}.
\]
\[(8) \]
let the individual absolute amount about guided previously, you stop putting forth on that person OFDM picture be \(N_p \). Moreover accept that the guided pictures of the \(p \)th carry antenna, shown inevitably examining \(X_p(p) \), have help installed Throughout sub-carriers \(p = 0, \ldots, N_p - 1 \). Here, the guided necessity helps assemblies likewise uniformly separated on the OFDM symbol, the put every something like these bunches would have measured. This kind for guided placement structure wills a chance to be exhibited for an opportunity on make Perfect for the portability frameworks.

Imagine similarly as about an MIMO-OFDM structure to MT carry besides MR get antennas. Those square frameworks of a MIMO-OFDM transmitter might make exhibited previously, fig.1(a). In the individual transmitter side, a serial hotspot touch flow may be regarded changed in under parallel sub flows. Each sub flow wills a chance to be In that perspective encoded toward an encoder. Each parallel majority of the information flow might a chance to be after that mapped on a specific picture flow to a propelled MPSK/QAM modulator. Next, guided pictures for carrier evaluation need aid installed in the repeat space in front of the OFDM regulation. Those OFDM regulations may be executed toward that inverse discrete Fourier change over (IDFT). Each carry radio wire sends OFDM pictures. Educate \(X_p(k) \) methods those information picture sent in the end Tom’s examining the carry radio wire \(p \) to sub-carrier \(k \).

The individual OFDM picture broadcasted to MT antennas may a chance to be described comparatively Concerning illustration \(X = [X_1 \cdots X_{MT}]^T \) the \(n \) will a chance to be the measure from claiming sub-carriers to particular case OFDM picture. At that point subsequently performing IDFT looking under each carry antenna, those event At space balanced pointer on the \(p \)th carry radio wire might an opportunity with a chance to be communicated Likewise put \(f \) might grid for its doorway at section i also segment \(j \) described Concerning delineation

At that point subsequently including a cyclic prefix (CP) from asserting period \(g \) will \(x \)p, we need. \(X_p,CP = [x_p(-G) x_p(-G + 1) \cdots x_p(T)]^T \). Finally, the picture flows, \(XCP = [xT_1 ,CP \cdots xT_{MT}]^T \) need aid changed through beginning with a parallel ought further bolstering a serial kind Besides allocated will relaying transmitters to transmission In the individual remote carrier. The individual square framework of a MIMO-OFDM skeleton authority may be shown previously, fig.1(b). We acknowledge an time-varying remote blurring carrier to \(h_{p,q}(l, n) \) described similarly the individual \(l \)th resolvable lifestyle those working about the individual carry radio wire \(p \) In addition get radio wire \(q \). We provide for \(1 \leq \tau \max T_s \) be the measure regarding blurring taps the put \(\tau \max T_s \) In addition \(T_s \) might be the best carrier delay spread and the time to OFDM picture.

\[
\alpha_{p,q,m,n}^{n,m} = \sum_{i=0}^{L-1} H_i^{m,n}(n-m)\omega_{q}(m), \quad 0 \leq n, m \leq N - 1. \quad (9)
\]

Those spot \(\omega_{q}(n) \) might be the individual included substance white gaussian upheaval (AWGN) In addition \(h_{p,q}(l, n) \) might a chance to be those \(l \)th resolvable best approach those center of the carry radio wire \(p \) Additionally get radio wire \(q \).

Note that the individual picked up pointer \(q(n), n = 0, \cdots, N - 1 \) will be protected beginning for cover picture get radio wire \(k \) in addition \(kth \) sub-carrier Might aggravate communicated Concerning outline.

\[
R_i(k) = \sum_{j=1}^{N_p} H_i^{m,n}(j)X_j(k) + \sum_{j=1}^{N_p} \sum_{l=0}^{L-1} H_i^{m,n}(k-l)X_j(m)\omega_{q}(l)+W_j(k)
\]

(11)

\[
H_i^{m,n}(k) = \sum_{l=0}^{N_p-1} h_{p,q}(l, n)e^{-j2\pi nk/N}
\]

(12)

VI. RESULTS AND PERFORMANCE EVALUATION

The system parameters correspond to the parameters in the 3GPP LTE standard [1]. In particular, we consider a MIMO-OFDM system with 512 sub-carriers and QPSK modulation, operating at a 5 GHz band. The bit transmission rate is 7.2 Mbps and sampling frequency is 7.68 MHz. The number of transmit and receive antennas are set to 2. In the proposed method, the channel is estimated by using the Doppler transmission value, pilot symbols added to estimate data symbols at the receiver side. In addition, at the receiver side, data estimates are utilized iteratively as additional pilots to improve the channel estimation. In Both methods channel estimation is carried out and two methods are compared to verify the efficient way of channel estimation and simulation results. The proposed method can be tested for tracking channel variation in high mobility systems within minimum span of time and lesser number of iterations and can be used in future works. Future work would include proposed method in the algorithm based on the Krylov subspace method which allows parallelization and computations of the K filters and storage reduction.
Figure 2: BER with and without Doppler shift of 0.4.

Figure 2 shows the BER value for with and without effect of Doppler shift.

Figure 3: BER versus SNR value of with and without Doppler shift of 1.5

Figure 3 indicates that performance decreases has Doppler Effect increases. The performance is better without Doppler Effect.

Figure 4: BER value for Both methods for Doppler shift of 0.4.

Figure 4 show the Comparison Plot of pilot assisted iterative LS map method and PIC-DSC Method for Doppler shift of 0.4

Table 1: comparison of BER values for without and with Doppler shift

<table>
<thead>
<tr>
<th>Eb No(db)</th>
<th>Without Doppler shift</th>
<th>With Doppler shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.078650</td>
<td>0.707846</td>
</tr>
<tr>
<td>1</td>
<td>0.056282</td>
<td>0.506538</td>
</tr>
<tr>
<td>2</td>
<td>0.037506</td>
<td>0.337555</td>
</tr>
<tr>
<td>3</td>
<td>0.022878</td>
<td>0.205906</td>
</tr>
<tr>
<td>4</td>
<td>0.012301</td>
<td>0.112507</td>
</tr>
<tr>
<td>5</td>
<td>0.005954</td>
<td>0.053585</td>
</tr>
<tr>
<td>6</td>
<td>0.002388</td>
<td>0.021495</td>
</tr>
<tr>
<td>7</td>
<td>0.000773</td>
<td>0.006954</td>
</tr>
<tr>
<td>8</td>
<td>0.000191</td>
<td>0.001718</td>
</tr>
<tr>
<td>9</td>
<td>0.000034</td>
<td>0.000303</td>
</tr>
<tr>
<td>10</td>
<td>0.000004</td>
<td>0.000035</td>
</tr>
</tbody>
</table>

Table 2: comparison of BER values for Pilot assisted iterative LS map method and PIC-DSC method

<table>
<thead>
<tr>
<th>SNR</th>
<th>Pilot assisted iterative LS Map method</th>
<th>PIC–DSC method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000696</td>
<td>0.000044</td>
</tr>
<tr>
<td>5</td>
<td>0.001024</td>
<td>0.000015</td>
</tr>
<tr>
<td>10</td>
<td>0.000796</td>
<td>0.000005</td>
</tr>
<tr>
<td>15</td>
<td>0.000625</td>
<td>0.000001</td>
</tr>
<tr>
<td>20</td>
<td>0.000770</td>
<td>0.000000</td>
</tr>
<tr>
<td>25</td>
<td>0.000699</td>
<td>0.000000</td>
</tr>
<tr>
<td>30</td>
<td>0.000585</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of people who made it possible, whose consistent guidance and encouragement crowned our efforts with success. I express my gratitude to Principal Dr. SANJAY JAIN, CMRIT, and Bengaluru for having provided me the golden opportunity to undertake this project work in their esteemed organization. I sincerely thank Mrs. PAPPA M, Prof. and HOD, Department of Electronics and Communication Engineering, CMR Institute of Technology for the immense support given to me. Last but not the least, heartful thanks to my parents and friends for their support. Above all, I thank the Lord Almighty for His grace on me to succeed in this endeavor.
REFERENCES

International Journal of Engineering Research & Technology

☑ Fast, Easy, Transparent Publication
☑ More than 50000 Satisfied Authors
☑ Free Hard Copies of Certificates & Paper

Publication of Paper: Immediately after Online Peer Review

Why publish in IJERT?
✓ Broad Scope: high standards
✓ Fully Open Access: high visibility, high impact
✓ High quality: rigorous online peer review
✓ International readership
✓ Retain copyright of your article
✓ No Space constraints (any no. of pages)

www.ijert.org