Utilization of Banana and Pomogranate Peel Flour in Fortification of Bread

Suresh Bandal*, Mohammed Talib, Vishal Parate
Department of Food Technology, University Institute of Chemical Technology
North Maharashtra University, Jalgaon 425001
India

Abstract--The banana peel reported to have excellent nutritional health benefits against diarrhoea, dysentery, diabetes, cardiac disease, and hypertension, while pomogranate peel was reported to posses antimicrobial activities. The peel powder (60 mesh size) from banana and pomegranate were prepared from their dried peel. Due to their pharmaceutical use an attempt is made to prepare the bread by incorporating the peel powder of each from 5%, 10% and 15%. The bread were prepared by replacing 10%, 15%, 20%, and 30% of wheat flour by incorporating wheat flour with Banana Peel Flour and Pomegranate Peel flour in ratio of 5:5; 10:10; 15:15 and 5:10. The bread prepared was designated as B1, B2, B3 and B4 respectively. They were tested for moisture, ash, protein, fat, crude fibre, ascorbic acid and total polyphenols as per the standard methods. The calorific value of bread was determined by the bomb calorimeter. The Physico-chemical and sensory parameters of these four test bread were compared with a control bread containing 100% of wheat flour. Due to incorporating the peel powder of each from 5%, 10% and 15% the bread prepared were rich in an antioxidant activity as compared to the pu

Keywords: Pomegranate Peel Flour, Banana Peels Fibre, Polyphenolic Compound, and WHC.

I. INTRODUCTION

Banana and pomegranate is an important fruit of many tropical and subtropical regions of India. Banana is cultivated in area near about 830.5 thousand ha and total production is around 29,779.91 thousand tons. Total area under pomogranate cultivation India is 107 thousand ha and production is about 743 thousand ton. [6] Banana especially peels provide excellent nutritional status to contribute various health benefits it comprises diarrhoea, dysentery, intestinal lesion, in ulcerative colitis, diabetes, nephritis, gout, cardiac disease, hypertension [2, 3, 4, 5] it is richest source of dietary fibre as well as pectin (9-23%), however, The banana peel is major waste of banana processing industry it contribute near about 40% of fresh banana fruit [6]. Pomegranate (Punica gr...
banana peel in hot air oven at 60° C for 24 hrs. Dried peels were grinded in mixer and passes through 60 mesh screen to obtain banana peel flour. All dried powder was stored in airtight bottle and kept in cool place for further analysis.

Pomogranate Peel Powder:

The pomogranate fruit was washed and separated into peels. Then the peels are cut into small pieces and dried in hot air oven at 45°C for 48 hrs. The dried peels were grind in the laboratory mixer and stored in airtight bottle for further analysis.

Analysis of Nutritional Content:

The proximate composition of banana powder, pomogranate powder and bread were analyzed. Moisture, Ash, Fat, Protein, Total Sugar, and Fibre were determined according to method of [15]. Total sugar content was determined by the use of Fehling’s reagent method of [15].

Water Holding and Oil Holding Capacity:

The 25 ml of distilled water or oil and 1 gm of sample was taken in tubes of 30 ml and allow standing for room temperature for 15 min at ambient temperature. Then the tubes were centrifuged at 4000 x g for 20 min, and then the supernatant was allowed to drain. The residue remains after draining of excess water was weighed and WHC and OHC of sample were determined as gm of water or oil /gm sample [16].

Total Polyphenol Content:

Determination of TPC was carried out according to method described by the [17].

Sensory Evaluation:

The sensory evaluation of bread carried out by faculty staff and Non-staff members of institute. All samples were provided in plates having white colour at ambient temperature. The samples were evaluated for the overall acceptability colour, taste and crumb firmness. The samples rated on nine –point hedonic scale to find the liking and disliking of sample (9-like extremely, 5-neutral not like or not dislike 1-dislike extremely).

Bread Preparation:

Bread was prepared according to the straight dough method [18].

III. RESULTS AND DISCUSSION

Formulation of Bread:

Formulation of bread was carried out according to formulation of HUL, (Modern Food), Mumbai. Recipe used for the brown bread preparation was used.

Table no.1: Formulation of Bread.

<table>
<thead>
<tr>
<th></th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maida</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>Sugar</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Salt</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
</tr>
<tr>
<td>Shortening</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Yeast</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Water</td>
<td>50ml</td>
<td>60ml</td>
<td>70ml</td>
<td>85ml</td>
<td>75ml</td>
</tr>
<tr>
<td>BPP</td>
<td>-----</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>PPP</td>
<td>-----</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

B0- normal bread/ control bread; B1- Bread substituted with 5 % BPF and 5 % PPF; B2- Bread substituted with 10 % BPF and 10 % PPF.

B3- Bread substituted with 15 % BPF and 15 % PPF. B4- Bread substituted with 5 % BPF and 10 % PPF.

The water required for the bread preparation shows that the as concentration of substitution increase the water required for bread preparation also increases.

Proximate composition of Banana Powder and pomogranate powder:

The BPF having a highest content of ash as compared to the PPF which was higher than the result obtained by [19] i.e.8.50. The ascorbic acid content of pomogranate peel was 12.65 % which was higher as compared to banana peel flour as shown in Table no.2. The colour of banana peel was slightly darker than the pomogranate peel flour. Total sugar content of banana peel flour was higher than the pomogranate peel flour. Banana peel also having a higher content of fibre (21.51) than the pomogranate peel flour but lower than the result obtained by [19] (31.70 %).

Table no.2: Banana and Pomogranate Peel Flour composition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Banana peel</th>
<th>Pomogranate peel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>6.72</td>
<td>5.32</td>
</tr>
<tr>
<td>Ash</td>
<td>12.93</td>
<td>3.05</td>
</tr>
<tr>
<td>Fat</td>
<td>6.44</td>
<td>10.23</td>
</tr>
<tr>
<td>Protein</td>
<td>2.14</td>
<td>4.45</td>
</tr>
<tr>
<td>Fibre</td>
<td>21.51</td>
<td>15.14</td>
</tr>
<tr>
<td>Total sugar</td>
<td>43.06</td>
<td>32.68</td>
</tr>
<tr>
<td>Reducing sugar</td>
<td>10.44</td>
<td>9.07</td>
</tr>
<tr>
<td>Non reducing</td>
<td>32.62</td>
<td>23.61</td>
</tr>
<tr>
<td>Ascorbic acid mg/100gm</td>
<td>4.21</td>
<td>12.65</td>
</tr>
</tbody>
</table>
WATER HOLDING AND OIL HOLDING CAPACITY:

Table no.3: Water Holding & Oil Holding Capacity

<table>
<thead>
<tr>
<th></th>
<th>Water Holding Capacity</th>
<th>Oil Holding Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour</td>
<td>1.04</td>
<td>0.8</td>
</tr>
<tr>
<td>Banana Flour</td>
<td>3.48</td>
<td>0.9</td>
</tr>
<tr>
<td>Pomogranate Flour</td>
<td>2.35</td>
<td>0.9</td>
</tr>
</tbody>
</table>

The WHC of banana peel flour was higher as compared to the wheat and pomogranate flour as the banana having higher fibre content. Result shows that the water required for the bread dough preparations are found to increase from 50 ml to 85 ml as the concentration of banana and pomogranate peel flour increased in bread. The bread shows highest water absorption at the B3 concentration as shown in Table no.1. The water holding capacity of banana flour (3.48 ml/gm) was higher than the wheat and pomogranate flour.

Physiochemical Properties of Bread:

The addition of pomogranate and banana peel flour to bread leads to increase in ash content of bread Fig no.2. There is increase in ash (from 1.07 gm to 2.3 gm) content as the increase in level of banana peel flour and pomogranate peel flour. The same result were obtained by [20], ash content was increased from (1.82 % to 2.65 %) as the concentration of soy flour increased in bread. The ash content of control sample was lower than B1, B2 and B3 bread. As the ash content of banana peel is 12.93 % and pomogranate peel was 3.05 % according to [19] high ash content was analogous to good sources of minerals.

The addition of banana peel powder and pomogranate peel powder leads to the increase in moisture content of bread. The B3 bread shows the highest moisture content as compared to control. [20] Shows that addition of apple fiber to bread leads to the increase in water absorption of bread as apple fiber was consider as good water binder, so there is increase in moisture content of bread. The results are same as there is increase in water absorption as concentration of banana powder increase in bread as shown in Table no.1. The control bread shows the lower moisture content than the other concentration the flour substituted bread. The moisture content of B1 bread was 33.74 % which was increased from 27.99 % in control bread. The same results are obtained by [21] that moisture content of soy flour composite bread (28.5 %) was increased (39.5 %) as the level of soy flour increased in bread.

The addition of BPF and PPF affect the protein content of bread. The protein content of B1 bread was higher (9.4 %) as compare to the control bread (6.77) (control bread <B1). The same result was obtained by [21] that protein content of bread was increased from (8.13% to 12.5 %) as the concentration of soy flour increased in bread.

Figure 1. Effect on Moisture Content

Figure 2. Effect on ash Content

Figure 3. Effects on Protein Content of Bread
The fibre content of bread increased with the increase in banana and pomogranate flour. The increase in fibre content leads to an increase in water requirement for the bread preparation (Table 1). Also the moisture content of bread increased with increase in the substitution of banana and pomogranate flour (Fig. 1). Lack of adequate dietary fibre in the diet is associated with constipation, diverticulosis, cardiovascular disease and cancer [22]. Fibre in general may cause firmer crumb structure by a thickening effect on the area that surround the air bubbles in fibre added dough [23]. The fibre content of B1 bread (9.8 gm) which was accepted in sensory evaluation (Fig.9e) which was increased as compared to the control bread (0.97 gm). The same result obtained by [21] shows that the fibre content of bread increased from (3.30% to 5.60%) when concentration of soy flour increased in bread.

The ascorbic acid content of pomogranate peel was higher than the final product. The ascorbic acid content of bread decreased as the heating of bread was increased. The Vit.C content of B1 substituted bread was 1.05 mg which was higher as compared to the control bread (0.886 mg).

The calorific value of bread was increasing as the level of flour substitution was increasing in bread formulation. The increased calorific indicates that the addition of banana and pomogranate flour to the bread affects the nutritional value of bread as compared to the control bread. The protein, carbohydrate and some amount of fat content of flour substituted bread was increased, so there was increase in calorific value of bread. The calorific value of B1 bread was 276.1 Kcal/100 gm which was higher than the control bread (183.6 Kcal/100gm).
The total phenol content of bread substituted with banana and pomegranate peel flour was higher as compared to the control bread. The heat treatment might induce the changes in extractabilities of the phenolics and flavonoids due to the disruption of the plant cell wall. The phenol content of control bread (0.118µg/GAE) which was lower than the B1 bread (0.201µg/GAE).

Sensory Evaluation of Bread:

The sensory evaluation of bread carried out at department shows that B1 bread shows the good in taste (Fig.9 a) as compared to the other bread. As the concentration of peel flour was increased in bread there is slightly increase in bitterness of bread, these results may be due to the increased tannin content of pomegranate peel flour, so the taste evaluation shows lower in sensory scores. The highest mean score was obtained by the B1 bread for taste (7.3). The colour scores for B1 bread were much good as compared to other bread and also control bread (Fig.9b). The crumb texture of B1 bread was good as compared to the other bread (Fig.9c). The increase in fibre content of bread leads to deterioration of gluten structure, so the disturbed gluten structure shows its effect on crumb structure of bread. The addition of fibre shows its effect on firmness of crumb [23]. The flavour of bread was affected if level of flour is increased above the B1 bread. The B1 bread shows highest score for the flavour (Fig. 9d).

IV CONCLUSION

The B1 bread shows the good result for moisture, ash, protein, fat, fibre, calorific value and total phenolic content as compared to control. Also the B1 bread is acceptable on sensory evaluation. Higher dietary fibre content in B1 bread contributes to crumb firmness due to increased water holding capacity. The nutritional better bread can be prepared by the addition of banana and pomegranate peel flour at 5 % level of each.

V REFERENCES

1. Indian Horticulture Database (2013).