DSS for Detection and Comparison of Brain Tumor on T2-Weighted MRI Images

Vijay Subhash Gaikwad1
Department of Computer Engineering
SVIT, Chincholi
Nashik, India

Prof. S. M. Rokade2
Department of Computer Engineering
SVIT, Chincholi
Nashik, India

Abstract—this work is extension of our previous work [1]. Previous work [1] introduced the method for the detection of tumors in human brain on the basis of T2-weighted MRI images. The author developed method which detect tumor area in human brain on the basis of bitmapped digital MRI Images. This paper showing the results of developed system. Using different brain disease MRI dataset the experiments were performed. The experiment results shows that the conceptually simple proposed method is effectively detect tumor blocks. The system also compares the tumor between two MRI images taken over different time period of a patient and shows percent rise or fall in tumor.

Keywords—Image Analysis, Operation and Decision Support Systems, detection, Tumors, MRI.

I. INTRODUCTION

The magnetic resonance imaging is the technique used by creating strong magnetic field by passing an electric current through wire loops. At the same time other coils in the magnet send & receive radio waves. The protons are triggered in the body to align themselves. The radio waves are observed by the protons once it aligned which simulate spinning. After exciting molecules energy is released, this in turn emits energy signals that picked up by the coil. Finally this information is then sending to a computer for generating image after processing all the signals. This process not involves ionizing radiations unlike CT scanning or general x-ray studies. As per the survey conducted in the United States this year 12,820 men and 10,560 women (23,380 adults) will be diagnosed with primary cancerous tumors of the brain & spinal cord. Estimations give the statistics that 8,090 men & 6,230 women (14,320 adults) will be die from this disease this year. In recent years the development in medical science & imaging techniques given facility to use these techniques in various domains of medicine like surgical planning, time series and statistical analysis, computer aided pathologies, surgical guidance diagnosis.

II. LITERATURE SURVEY

III. MATERIALS

The computational analysis is developed on Dell Latitude Intel Core2Due 2.00 GHz computer with 2GB RAM. The application is developed in JAVA using Eclipse tool. The T2-weighted MRI image dataset is used for the testing of the application. The MRI images take with different cases including tumor & non-tumor brain images.
IV. EXPERIMENTAL RESULTS

1) Tumor Detection

The experimental results of the DSS are getting after giving the input to the system from the MRI Data set as shown in figure 5. After clicking on the load button the browsing window appear to select the MRI Image.

Once the MRI image loaded, after clicking on the process button the system give the three output images as shown in figure 6.

The system reports panel at the right side of the window shows the different output values like threshold, minimum intensity & maximum intensity, red data block count & yellow data block count etc. which is calculated after processing the input MRI image.

As shown in figure 7 the system gives the three output images. The Processed image i.e. figure 7(b) showing the color allotted to pixels in the image after preprocessing. The danger blocks are getting in figure 7(c), which is depends on the calculations made during the processing of the system. The figure 7(d) gives the output of the danger blocks on threshold. The red danger blocks have shown the high density tumor area and Yellow danger blocks have shown medium or low density tumor area.

<table>
<thead>
<tr>
<th>Image</th>
<th>Sample Output Readings for tumor & non-tumor image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Image</td>
<td>Threshold 201, Red D.B 9, Yellow D.B 4</td>
</tr>
<tr>
<td>Non-Tumor Image</td>
<td>Threshold 190, Red D.B 0, Yellow D.B 0</td>
</tr>
</tbody>
</table>

The experiment is performed on the T2-weighted MRI image dataset. The dataset consist of different cases of tumor & non-tumor brain images. The above table (TABLE I) shows the readings taken by randomly selecting one tumor image & one non-tumor image.
2) **Tumor Comparison**

The system provides the facility to compare the two MRI images taken over period of time of the patient. System shows the results of percent fall or percent rise in tumor blocks.

The fig shows the comparison results of the two MRI images of a patient. In this example the patient tumor decreased & percent fall in tumor is shown by the system. If the tumor increased then the system can show the percent rise in tumor. The table II shows the reading given by the system of the red count, red data block, percent fall w.r.t to red count and percent red data block fall.

<table>
<thead>
<tr>
<th>Image</th>
<th>Sample Output Readings For tumor & non-tumor image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCI</td>
</tr>
<tr>
<td>1st MRI Image</td>
<td>468</td>
</tr>
<tr>
<td>2nd MRI Image</td>
<td>442</td>
</tr>
</tbody>
</table>

TABLE II

V. CONCLUSION

The proposed technique effectively capable to identify the tumor areas in the given T2-weighted brain image as input taken from the MRI dataset consisting of different cases. The technique is capable to help the doctors to analyze the tumor area in human brain.

VI. ACKNOWLEDGMENT

We would like to acknowledge the technical support by Computer Engineering faculty and staff of SVIT, Chincholi and also we would like to thank Dr. Amit Yeole, Neurologist who helps us to analyze medical terms related to brain structure for this work.

REFERENCES

AUTHOR PROFILE

Mr. Vijay S. Gaikwad has completed his B.E in Information Technology from Pune University and currently pursuing Master of Engineering from SVIT Chincholi, Nashik.

Prof. S.M. Rokade has completed his B.E in Computer Engineering from Pune University and M.E in Computer Science & Engineering from MGM, Nanded. He is presently working as an Associate Professor in SVIT Chincholi, Nashik.